

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Multi-way Communication and Cooperation

Anas Chaaban* and Aydin Sezgin[†]

 Computer, Electrical and Mathematical Sciences and Engineering, KAUST, Thuwal, KSA
[†] Institute of Digital Communication Systems, RUB, Bochum, Germany

Structure

Part 1: Intro. & Basics

2 Why multi-way?

3 History

Point-to-point Multiple-access channel Broadcast channel Relay channel

Definition

Nodes acting as sources and destinations simultaneously.

Definition

Nodes acting as sources and destinations simultaneously.

Definition

Nodes acting as sources and destinations simultaneously.

- uni-directional treatment (one way):
 - Point-to-point channel,

Definition

Nodes acting as sources and destinations simultaneously.

- uni-directional treatment (one way):
 - Point-to-point channel,
 - Multiple-access channel,

Definition

Nodes acting as sources and destinations simultaneously.

- uni-directional treatment (one way):
 - Point-to-point channel,
 - Multiple-access channel,
 - Broadcast channel,

Definition

Nodes acting as sources and destinations simultaneously.

- uni-directional treatment (one way):
 - Point-to-point channel,
 - Multiple-access channel,
 - Broadcast channel,
- Bi-directional treatment (two-way):
 - Two-way channel

Definition

Nodes acting as sources and destinations simultaneously.

- uni-directional treatment (one way):
 - Point-to-point channel,
 - Multiple-access channel,
 - Broadcast channel,
- Bi-directional treatment (two-way):
 - Two-way channel
 - Two-way relay channel

Definition

Nodes acting as sources and destinations simultaneously.

- uni-directional treatment (one way):
 - Point-to-point channel,
 - Multiple-access channel,
 - Broadcast channel,
- Bi-directional treatment (two-way):
 - Two-way channel
 - Two-way relay channel
 - multi-way, etc.

Definition

Nodes acting as sources and destinations simultaneously.

Example: Device-to-device

- uni-directional treatment (one way):
 - Point-to-point channel,
 - Multiple-access channel,
 - Broadcast channel,
- Bi-directional treatment (two-way):
 - Two-way channel
 - Two-way relay channel
 - multi-way, etc.

Goal

Introduce and discuss techniques for bi-directional communications.

Outline

1 What is bi-directional communication?

2 Why multi-way?

History Point-to-point Multiple-access chann Broadcast channel Relay channel

Rapid changes in communications: applications, services, requirements, etc.

Rapid changes in communications: applications, services, requirements, etc.

Sources: experian.com, allmytech.pk, en.wikipedia.org, ecnmag.com, kpcb.com, play.google.com

Rapid changes in communications: applications, services, requirements, etc.

Sources: experian.com, allmytech.pk, en.wikipedia.org, ecnmag.com, kpcb.com, play.google.com

Rapid changes in communications: applications, services, requirements, etc.

Sources: experian.com, allmytech.pk, en.wikipedia.org, ecnmag.com, kpcb.com, play.google.com

Future: Everything can communicate!

New players, new rules!

Sources: influxis.com

RUB Institute of Digital Communication Systems

Towards 50B devices in 2020!

Source: Ericsson, 2010

Increasing number of connected devices (IoT, M2M, etc.)

RUB Institute of Digital Communication Systems

Towards 50B devices in 2020!

Source: Ericsson, 2010

Increasing number of connected devices (IoT, M2M, etc.)

Consequence: Networks must support much higher data-rates

RUB Institute of Digital Communication Systems

• Densification of networks

- Densification of networks
- Device-to-device

- Densification of networks
- Device-to-device
- IoT, etc.

- Densification of networks
- Device-to-device
- IoT, etc.
- Important: Most communication is bi-directional (uplink/downlink, feedback, etc.)

- Densification of networks
- Device-to-device
- IoT, etc.
- Important: Most communication is bi-directional (uplink/downlink, feedback, etc.)
- $\Rightarrow\,$ need to study bi-directional communication

Device-to-device

• Important factors: Multi-way communications and Relaying!

- Important factors: Multi-way communications and Relaying!
- \Rightarrow need to study bi-directional communication

Body-area networks

• Multiple sensors communicating with a central node,

Sources: www.examiner.com
Body-area networks

- Multiple sensors communicating with a central node,
- Higher spectral/power efficiency ⇒ shorter transmission duration ⇒ longer life-cycle/less radiation

Sources: www.examiner.com

Body-area networks

- Multiple sensors communicating with a central node,
- Higher spectral/power efficiency ⇒ shorter transmission duration ⇒ longer life-cycle/less radiation
- \Rightarrow need to study bi-directional communication

Sources: www.examiner.com

• Two-way channel,

- Two-way channel,
- Two-way relay channel,

- Two-way channel,
- Two-way relay channel,

• Multi-way relay channel,

- Two-way channel,
- Two-way relay channel,

- Multi-way relay channel,
- MIMO cases,

- Two-way channel,
- Two-way relay channel,

- Multi-way relay channel,
- MIMO cases,

One-way communication is an integral part of two-way communication

- Two-way channel,
- Two-way relay channel,

- Multi-way relay channel,
- MIMO cases,

One-way communication is an integral part of two-way communication

Brief Review

Outline

1 What is bi-directional communication?

2 Why multi-way?

3 History

Point-to-point Multiple-access channel Broadcast channel Relay channel

In the beginning... One-way (uni-directional) Communications:

• Point-to-point (P2P): [Shannon 48],

- Point-to-point (P2P): [Shannon 48],
- Relay channel (RC): [van der Meulen 71], [Cover & El-Gamal 79],

- Point-to-point (P2P): [Shannon 48],
- Relay channel (RC): [van der Meulen 71], [Cover & El-Gamal 79],
- Multiple-access channel (MAC): [Ahlswede 71], [Liao 72],

- Point-to-point (P2P): [Shannon 48],
- Relay channel (RC): [van der Meulen 71], [Cover & El-Gamal 79],
- Multiple-access channel (MAC): [Ahlswede 71], [Liao 72],
- Broad-cast channel (BC): [Cover 72], [Bergmans 73],

- Point-to-point (P2P): [Shannon 48],
- Relay channel (RC): [van der Meulen 71], [Cover & El-Gamal 79],
- Multiple-access channel (MAC): [Ahlswede 71], [Liao 72],
- Broad-cast channel (BC): [Cover 72], [Bergmans 73],
- Interference Channel (IC): [Carleial 75], [Han & Koayashi 81], [Sato 81],

One transmitter, one receiver:

One transmitter, one receiver:

• Input: $\mathbf{x} = (x(1), \cdots, x(n))$ with power P,

One transmitter, one receiver:

- Input: $\mathbf{x} = (x(1), \cdots, x(n))$ with power P,
- Output: $\mathbf{y} = \mathbf{x} + \mathbf{z}$, where \mathbf{z} is noise,

- Input: $\mathbf{x} = (x(1), \cdots, x(n))$ with power P,
- Output: $\mathbf{y} = \mathbf{x} + \mathbf{z}$, where \mathbf{z} is noise,

$$\begin{array}{c} \mathsf{Message} \\ m \in \{1, \cdots, M\} \rightarrow \fbox{Encoder} \rightarrow \mathbf{x} \rightarrow \fbox{Channel} \rightarrow \mathbf{y} \rightarrow \fbox{Decoder} \rightarrow \hat{m} \end{array}$$

with power P,

• Output: $\mathbf{y} = \mathbf{x} + \mathbf{z}$, where \mathbf{z} is noise,

$$\begin{array}{c} \mathsf{Message} \\ m \in \{1, \cdots, M\} \rightarrow \fbox{Encoder} \rightarrow \mathbf{x} \rightarrow \fbox{Channel} \rightarrow \mathbf{y} \rightarrow \fbox{Decoder} \rightarrow \hat{m} \end{array}$$

• Error probability: $P_e = \operatorname{Prob}(\hat{m} \neq m)$,

- Input: $\mathbf{x} = (x(1), \cdots, x(n))$ with power P,
- Output: $\mathbf{y} = \mathbf{x} + \mathbf{z}$, where \mathbf{z} is noise,

$$\begin{array}{c} \mathsf{Message} \\ m \in \{1, \cdots, M\} \rightarrow \fbox{Encoder} \rightarrow \mathbf{x} \rightarrow \fbox{Channel} \rightarrow \mathbf{y} \rightarrow \fbox{Decoder} \rightarrow \hat{m} \end{array}$$

- Error probability: $P_e = \operatorname{Prob}(\hat{m} \neq m)$,
- Reliable Comm: $P_e \to 0$ as $n \to \infty$,

- Input: $\mathbf{x} = (x(1), \cdots, x(n))$ with power P,
- Output: $\mathbf{y} = \mathbf{x} + \mathbf{z}$, where \mathbf{z} is noise,

 $\begin{array}{c} \mathsf{Message} \\ m \in \{1, \cdots, M\} \rightarrow \fbox{Encoder} \rightarrow \mathbf{x} \rightarrow \fbox{Channel} \rightarrow \mathbf{y} \rightarrow \fbox{Decoder} \rightarrow \hat{m} \end{array}$

- Error probability: $P_e = \operatorname{Prob}(\hat{m} \neq m)$,
- Reliable Comm: $P_e \to 0$ as $n \to \infty$,
- Goal: Find the maximum M.

Let the code-length n = 1

Let the code-length n = 1

Assume:

• Tx power P, e.g. $|x| < \sqrt{P}$

Let the code-length n = 1

Assume:

- Tx power P, e.g. $|x| < \sqrt{P}$
- Noise $|z| < \sigma$

Let the code-length n = 1

Assume:

- Tx power P, e.g. $|x| < \sqrt{P}$
- Noise $|z| < \sigma$
- Question: How many points can we place between $-\sqrt{P}$ and \sqrt{P} at a distance of 2σ ?

Let the code-length n = 1

Assume:

- Tx power P, e.g. $|x| < \sqrt{P}$
- Noise $|z| < \sigma$
- Question: How many points can we place between $-\sqrt{P}$ and \sqrt{P} at a distance of 2σ ?

• Answer:
$$M = \frac{2\sqrt{P}}{2\sigma} = \sqrt{\mathsf{SNR}}$$

Let the code-length n = 1

Assume:

- Tx power P, e.g. $|x| < \sqrt{P}$
- Noise $|z| < \sigma$
- Question: How many points can we place between $-\sqrt{P}$ and \sqrt{P} at a distance of 2σ ?

• Answer: $M = \frac{2\sqrt{P}}{2\sigma} = \sqrt{\text{SNR}}$ (1-D sphere-packing)

Let the code-length n = 1

Assume:

- Tx power P, e.g. $|x| < \sqrt{P}$
- Noise $|z| < \sigma$
- Question: How many points can we place between $-\sqrt{P}$ and \sqrt{P} at a distance of 2σ ?

• Answer: $M = \frac{2\sqrt{P}}{2\sigma} = \sqrt{\text{SNR}}$ (1-D sphere-packing)

• M codewords $\Rightarrow \log_2(M) = \frac{1}{2} \log_2(SNR)$ bits,

Let the code-length n = 1

Assume:

- Tx power P, e.g. $|x| < \sqrt{P}$
- Noise $|z| < \sigma$
- Question: How many points can we place between $-\sqrt{P}$ and \sqrt{P} at a distance of 2σ ?

• Answer: $M = \frac{2\sqrt{P}}{2\sigma} = \sqrt{\text{SNR}}$ (1-D sphere-packing)

- M codewords $\Rightarrow \log_2(M) = \frac{1}{2} \log_2(SNR)$ bits,
- Rate $R = \frac{\log_2(M)}{n} = \frac{1}{2}\log_2(SNR)$ bits per transmission.

• With n = 1, decoding errors occur,

- With n = 1, decoding errors occur,
- instead, encoding with $n \gg 1$,

- With n = 1, decoding errors occur,
- instead, encoding with $n \gg 1$,
- number of codewords: $M = (\sqrt{1 + SNR})^n$ (n-D sphere-packing),

- With n = 1, decoding errors occur,
- instead, encoding with $n \gg 1$,
- number of codewords: $M = (\sqrt{1 + SNR})^n$ (n-D sphere-packing),

$$\Rightarrow$$
 Rate $=\frac{\log_2(M)}{n} = \frac{1}{2}\log_2(1 + \text{SNR})$ bits per transmission,

- With n = 1, decoding errors occur,
- instead, encoding with $n \gg 1$,
- number of codewords: $M = (\sqrt{1 + SNR})^n$ (n-D sphere-packing),
- \Rightarrow Rate $=\frac{\log_2(M)}{n} = \frac{1}{2}\log_2(1 + \text{SNR})$ bits per transmission,
 - Capacity [Shannon 48].

MAC

Two transmitters, one receiver:

Two transmitters, one receiver:

- Inputs: \mathbf{x}_1 and $\mathbf{x}_2\text{,}$
- Powers P_1 and P_2 ,
Two transmitters, one receiver:

- Inputs: \mathbf{x}_1 and \mathbf{x}_2 ,
- Powers P_1 and P_2 ,
- Output: $\mathbf{y} = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}$,

Two transmitters, one receiver:

- Inputs: \mathbf{x}_1 and \mathbf{x}_2 ,
- Powers P_1 and P_2 ,
- Output: $\mathbf{y} = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}$,
- Goal: Find the rate-region.

Two transmitters, one receiver:

- Inputs: \mathbf{x}_1 and \mathbf{x}_2 ,
- Powers P_1 and P_2 ,
- Output: $\mathbf{y} = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}$,
- Goal: Find the rate-region.

Rate-region

The rate-region is the set of achievable rate pairs (R_1, R_2) .

- Successive decoding:
- Treat \mathbf{x}_2 as noise \Rightarrow

$$R_1 = \frac{1}{2} \log \left(1 + \frac{P_1}{\sigma^2 + P_2} \right),$$

- Successive decoding:
- Treat \mathbf{x}_2 as noise \Rightarrow

$$R_1 = \frac{1}{2} \log \left(1 + \frac{P_1}{\sigma^2 + P_2} \right),$$

• Subtract \mathbf{x}_1 and decode $\mathbf{x}_2 \Rightarrow$

$$R_2 = \frac{1}{2} \log \left(1 + \frac{P_2}{\sigma^2} \right),$$

- Successive decoding:
- Treat \mathbf{x}_2 as noise \Rightarrow

$$R_1 = \frac{1}{2} \log \left(1 + \frac{P_1}{\sigma^2 + P_2} \right),$$

• Subtract \mathbf{x}_1 and decode $\mathbf{x}_2 \Rightarrow$

$$R_2 = \frac{1}{2} \log \left(1 + \frac{P_2}{\sigma^2} \right),$$

• opposite order,

- Successive decoding:
- Treat \mathbf{x}_2 as noise \Rightarrow

$$R_1 = \frac{1}{2} \log \left(1 + \frac{P_1}{\sigma^2 + P_2} \right),$$

• Subtract \mathbf{x}_1 and decode $\mathbf{x}_2 \Rightarrow$

$$R_2 = \frac{1}{2} \log \left(1 + \frac{P_2}{\sigma^2} \right),$$

- opposite order,
- Capacity region [Ahlswede 71],

$$R_i \leq \frac{1}{2} \log\left(1 + \frac{P_i}{\sigma^2}\right), \quad i = 1, 2,$$
$$R_1 + R_2 \leq \frac{1}{2} \log\left(1 + \frac{P_1 + P_2}{\sigma^2}\right).$$

• Input: x with power P,

- Input: x with power P,
- Outputs: $\mathbf{y}_i = \mathbf{x} + \mathbf{z}_i$,
- Noises: $\sigma_1^2 \le \sigma_2^2$,

- Input: x with power P,
- Outputs: $\mathbf{y}_i = \mathbf{x} + \mathbf{z}_i$,
- Noises: $\sigma_1^2 \leq \sigma_2^2$,
- Goal: Find the rate-region,

BC

- Superposition coding:
- Send $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, powers $P_1 + P_2 = P$,

BC

- Superposition coding:
- Send $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, powers $P_1 + P_2 = P$,
- Both receivers decode x₂ treating x₁ as noise ⇒

$$R_2 = \frac{1}{2} \log \left(1 + \frac{P_2}{\sigma_2^2 + P_1} \right),$$

BC

- Superposition coding:
- Send $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, powers $P_1 + P_2 = P$,
- Both receivers decode x₂ treating x₁ as noise ⇒

$$R_2 = \frac{1}{2} \log \left(1 + \frac{P_2}{\sigma_2^2 + P_1} \right),$$

• Rx1 subtracts \mathbf{x}_2 and decodes $\mathbf{x}_1 \Rightarrow$

$$R_1 = \frac{1}{2} \log \left(1 + \frac{P_1}{\sigma_1^2} \right),$$

- Superposition coding:
- Send $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, powers $P_1 + P_2 = P$,
- Both receivers decode x₂ treating x₁ as noise ⇒

$$R_2 = \frac{1}{2} \log \left(1 + \frac{P_2}{\sigma_2^2 + P_1} \right),$$

• Rx1 subtracts \mathbf{x}_2 and decodes $\mathbf{x}_1 \Rightarrow$

$$R_1 = \frac{1}{2} \log \left(1 + \frac{P_1}{\sigma_1^2} \right),$$

• Rate-region = Capacity region [Cover 72], [Bergmans 74],

- Inputs: \mathbf{x}, \mathbf{x}_r ,
- Powers: P, P_r ,

- Inputs: \mathbf{x}, \mathbf{x}_r ,
- Powers: P, P_r ,
- Outputs: $\mathbf{y} = \mathbf{x} + \mathbf{x}_r + \mathbf{z}$, $\mathbf{y}_r = \mathbf{x} + \mathbf{z}_r$,

- Inputs: \mathbf{x} , \mathbf{x}_r ,
- Powers: P, P_r ,
- Outputs: $\mathbf{y} = \mathbf{x} + \mathbf{x}_r + \mathbf{z}$, $\mathbf{y}_r = \mathbf{x} + \mathbf{z}_r$,
- Noise variance: σ^2 and σ_r^2 .

• Main schemes: Decode-forward, Compress-forward

- Main schemes: Decode-forward, Compress-forward
- Notice: Interaction between consecutive symbols/codewords at Rx!

- Main schemes: Decode-forward, Compress-forward
- Notice: Interaction between consecutive symbols/codewords at Rx!
- Interaction can be exploited using block-Markov encoding [Cover & El-Gamal 79],

- Main schemes: Decode-forward, Compress-forward
- Notice: Interaction between consecutive symbols/codewords at Rx!
- Interaction can be exploited using block-Markov encoding [Cover & El-Gamal 79],
- For simplicity: Consider a separated relay channel

Decode-forward:

• Relay decodes $\mathbf{x} \Rightarrow$

$$R \le \frac{1}{2} \log \left(1 + \frac{P}{\sigma_r^2} \right).$$

Decode-forward:

 $\bullet \ \ \mathsf{Relay} \ \ \mathsf{decodes} \ \mathbf{x} \Rightarrow$

$$R \le \frac{1}{2} \log \left(1 + \frac{P}{\sigma_r^2} \right).$$

• Relay re-encodes x to x_r and sends it.

Decode-forward:

 $\bullet \ \ \mathsf{Relay} \ \ \mathsf{decodes} \ \mathbf{x} \Rightarrow$

$$R \le \frac{1}{2} \log \left(1 + \frac{P}{\sigma_r^2} \right).$$

- Relay re-encodes x to x_r and sends it.
- Rx decodes $x_r \Rightarrow$

$$R \le \frac{1}{2} \log \left(1 + \frac{P_r}{\sigma^2} \right).$$

Decode-forward:

 $\bullet \ \ \mathsf{Relay} \ \ \mathsf{decodes} \ \mathbf{x} \Rightarrow$

$$R \le \frac{1}{2} \log \left(1 + \frac{P}{\sigma_r^2} \right).$$

- Relay re-encodes x to x_r and sends it.
- Rx decodes $x_r \Rightarrow$

$$R \le \frac{1}{2} \log \left(1 + \frac{P_r}{\sigma^2} \right).$$

• Achievable rate $\min\left\{\frac{1}{2}\log\left(1+\frac{P}{\sigma_r^2}\right), \frac{1}{2}\log\left(1+\frac{P_r}{\sigma^2}\right)\right\}$.

• Cut
$$1 \Rightarrow C \leq \frac{1}{2} \log \left(1 + \frac{P}{\sigma_r^2} \right)$$
.

- Cut $1 \Rightarrow C \leq \frac{1}{2} \log \left(1 + \frac{P}{\sigma_r^2} \right)$.
- Cut 2 $\Rightarrow C \leq \frac{1}{2} \log \left(1 + \frac{P_r}{\sigma^2}\right)$.

- Cut $1 \Rightarrow C \leq \frac{1}{2} \log \left(1 + \frac{P}{\sigma_r^2} \right)$.
- Cut $2 \Rightarrow C \leq \frac{1}{2} \log \left(1 + \frac{P_r}{\sigma^2}\right)$.
- $\Rightarrow \text{ Upper bound } C \leq \min\left\{ \tfrac{1}{2} \log\left(1 + \tfrac{P}{\sigma_r^2}\right), \tfrac{1}{2} \log\left(1 + \tfrac{P_r}{\sigma^2}\right) \right\}.$

- Cut $1 \Rightarrow C \leq \frac{1}{2} \log \left(1 + \frac{P}{\sigma_r^2} \right)$.
- Cut $2 \Rightarrow C \leq \frac{1}{2} \log \left(1 + \frac{P_r}{\sigma^2}\right)$.
- $\Rightarrow \text{ Upper bound } C \leq \min\left\{ \frac{1}{2} \log\left(1 + \frac{P}{\sigma_r^2}\right), \frac{1}{2} \log\left(1 + \frac{P_r}{\sigma^2}\right) \right\}.$
 - DF Optimal: Coincides with the cut-set bound.

Compress-forward:

• Relay compresses/quantizes \mathbf{y}_r to $\hat{\mathbf{y}}_r = \mathbf{y}_r + \mathbf{z}_c$ (\mathbf{z}_c compression noise)

Compress-forward:

• Relay compresses/quantizes \mathbf{y}_r to $\hat{\mathbf{y}}_r = \mathbf{y}_r + \mathbf{z}_c$ (\mathbf{z}_c compression noise)

Compress-forward:

- Relay compresses/quantizes \mathbf{y}_r to $\hat{\mathbf{y}}_r = \mathbf{y}_r + \mathbf{z}_c$ (\mathbf{z}_c compression noise)
- Compression rate $R_c \left(\frac{1}{n} \log(\text{number of bins})\right)$

Multi-way Communications

Compress-forward:

• Compression noise variance $D = (P + \sigma_r^2) \cdot 2^{-2R_c}$ (optimal rate-distortion)

- Compression noise variance $D = (P + \sigma_r^2) \cdot 2^{-2R_c}$ (optimal rate-distortion)
- Relay encodes $\hat{\mathbf{y}}_r$ to \mathbf{x}_r (rate R_c).

- Compression noise variance $D = (P + \sigma_r^2) \cdot 2^{-2R_c}$ (optimal rate-distortion)
- Relay encodes $\hat{\mathbf{y}}_r$ to \mathbf{x}_r (rate R_c).
- Rx decodes $\mathbf{x}_r \Rightarrow R_c = \frac{1}{2} \log \left(1 + \frac{P_r}{\sigma^2}\right)$.

- Compression noise variance $D = (P + \sigma_r^2) \cdot 2^{-2R_c}$ (optimal rate-distortion)
- Relay encodes $\hat{\mathbf{y}}_r$ to \mathbf{x}_r (rate R_c).
- Rx decodes $\mathbf{x}_r \Rightarrow R_c = \frac{1}{2} \log \left(1 + \frac{P_r}{\sigma^2} \right).$
- Rx obtains $\hat{\mathbf{y}}_r = \mathbf{x} + \mathbf{z}_r + \mathbf{z}_c$.

- Compression noise variance $D = (P + \sigma_r^2) \cdot 2^{-2R_c}$ (optimal rate-distortion)
- Relay encodes $\hat{\mathbf{y}}_r$ to \mathbf{x}_r (rate R_c).
- Rx decodes $\mathbf{x}_r \Rightarrow R_c = \frac{1}{2} \log \left(1 + \frac{P_r}{\sigma^2}\right)$.
- Rx obtains $\hat{\mathbf{y}}_r = \mathbf{x} + \mathbf{z}_r + \mathbf{z}_c$.
- Rx then decodes **x** from $\hat{\mathbf{y}}_r \Rightarrow$ $R = \frac{1}{2} \log \left(1 + \frac{P}{\sigma_r^2 + D} \right) \le \frac{1}{2} \log \left(1 + \frac{P(P_r + \sigma^2)}{\sigma_r^2(P_r + \sigma^2) + \sigma^2(P + \sigma_r^2)} \right).$

Part 2: SISO Bi-directional

Outline

- 1 Two-way channel
- Two-way relay channel The linear-deterministic approximation Lattice codes
- Multi-way relay channel Multi-pair Two-way Relay Channel Multi-way Relay Channel
- 4 Multi-way Channel

Channel with two transceivers: First studied by Shannon (1961)

Channel with two transceivers: First studied by Shannon (1961)

• Outer bound: Cut-set $R_i \leq I(X_i, Y_j | X_j)$ maximized over $P(X_1, X_2)$,

- Outer bound: Cut-set $R_i \leq I(X_i, Y_j | X_j)$ maximized over $P(X_1, X_2)$,
- Inner bound: P2P codebooks $R_i \leq I(X_i, Y_j | X_j)$ maximized over $P(X_1, X_2) = P(X_1)P(X_2)$,

- Outer bound: Cut-set $R_i \leq I(X_i, Y_j | X_j)$ maximized over $P(X_1, X_2)$,
- Inner bound: P2P codebooks $R_i \leq I(X_i, Y_j | X_j)$ maximized over $P(X_1, X_2) = P(X_1)P(X_2)$,
- $P(X_1, X_2)$ vs. $P(X_1)P(X_2)$:
 - $P(X_1, X_2)$ allows interactive coding: X_i and Y_i can be dependent, $X_1 = \mathcal{E}(m_1, Y_1)$
 - $P(X_1)P(X_2)$ does not allow interactive coding: X_i and Y_i independent, $X_1 = \mathcal{E}(m_1)$

- Outer bound: Cut-set $R_i \leq I(X_i, Y_j | X_j)$ maximized over $P(X_1, X_2)$,
- Inner bound: P2P codebooks $R_i \leq I(X_i, Y_j | X_j)$ maximized over $P(X_1, X_2) = P(X_1)P(X_2)$,
- $P(X_1, X_2)$ vs. $P(X_1)P(X_2)$:
 - $P(X_1, X_2)$ allows interactive coding: X_i and Y_i can be dependent, $X_1 = \mathcal{E}(m_1, Y_1)$
 - $P(X_1)P(X_2)$ does not allow interactive coding: X_i and Y_i independent, $X_1 = \mathcal{E}(m_1)$
- Consequence: Bounds do not coincide

- Outer bound: Cut-set $R_i \leq I(X_i, Y_j | X_j)$ maximized over $P(X_1, X_2)$,
- Inner bound: P2P codebooks $R_i \leq I(X_i, Y_j | X_j)$ maximized over $P(X_1, X_2) = P(X_1)P(X_2)$,
- $P(X_1, X_2)$ vs. $P(X_1)P(X_2)$:
 - $P(X_1, X_2)$ allows interactive coding: X_i and Y_i can be dependent, $X_1 = \mathcal{E}(m_1, Y_1)$
 - $P(X_1)P(X_2)$ does not allow interactive coding: X_i and Y_i independent, $X_1 = \mathcal{E}(m_1)$
- Consequence: Bounds do not coincide
- \Rightarrow unknown capacity!

• However: Bounds coincide if channel is separable!

- However: Bounds coincide if channel is separable!
- i.e., channel decomposes into two P2P channels.

- However: Bounds coincide if channel is separable!
- i.e., channel decomposes into two P2P channels.
- The Gaussian channel belongs to this class.

- However: Bounds coincide if channel is separable!
- i.e., channel decomposes into two P2P channels.
- The Gaussian channel belongs to this class.
- Inputs: x₁ and x₂ with powers P₁ and P₂,

- However: Bounds coincide if channel is separable!
- i.e., channel decomposes into two P2P channels.
- The Gaussian channel belongs to this class.
- Inputs: x₁ and x₂ with powers P₁ and P₂,
- Outputs: y_i = x_j + h_ix_j + z_i, h_i ∈ ℝ, z_i has variance σ²_i,

- However: Bounds coincide if channel is separable!
- i.e., channel decomposes into two P2P channels.
- The Gaussian channel belongs to this class.
- Inputs: x₁ and x₂ with powers P₁ and P₂,
- Outputs: $\mathbf{y}_i = \mathbf{x}_j + h_i \mathbf{x}_j + \mathbf{z}_i$, $h_i \in \mathbb{R}$, \mathbf{z}_i has variance σ_i^2 ,
- Achievable rate: $R_i \leq \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma_j^2}\right)$ (independent of self-interference!),

- However: Bounds coincide if channel is separable!
- i.e., channel decomposes into two P2P channels.
- The Gaussian channel belongs to this class.
- Inputs: x₁ and x₂ with powers P₁ and P₂,

Anas Chaaban and Aydin Sezgin

- Outputs: $\mathbf{y}_i = \mathbf{x}_j + h_i \mathbf{x}_j + \mathbf{z}_i$, $h_i \in \mathbb{R}$, \mathbf{z}_i has variance σ_i^2 ,
- Achievable rate: $R_i \leq \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma_j^2}\right)$ (independent of self-interference!),
- Capacity [Han 84],

Remarks:

Half-duplex vs. full-duplex:

• Half-duplex:

$$R_i \le \frac{1}{4} \log \left(1 + \frac{P_i}{\sigma_j^2} \right)$$

• Full-duplex:

$$R_i \le \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma_j^2} \right).$$

• Full-duplex achieves double rate.

Remarks:

Half-duplex vs. full-duplex:

• Half-duplex:

$$R_i \le \frac{1}{4} \log \left(1 + \frac{P_i}{\sigma_j^2} \right)$$

• Full-duplex:

$$R_i \le \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma_j^2} \right).$$

• Full-duplex achieves double rate.

Feedback vs. Two-way:

- Feedback does not increase the P2P capacity [Shannon 56].
- Rate: $R_1 \leq \frac{1}{2} \log \left(1 + \frac{P_1}{\sigma_2^2} \right)$.
- Two-way achieves double rate.

.....

• What happens if nodes are far/physically separated?

Outline

1 Two-way channel

Two-way relay channel The linear-deterministic approximation Lattice codes

Multi-way relay channel Multi-pair Two-way Relay Channel Multi-way Relay Channel

4 Multi-way Channel

Channel with two transceivers and a relay: First studied by [Rankov & Wittneben 06]

Channel with two transceivers and a relay: First studied by [Rankov & Wittneben 06]

Gaussian two-way relay channel:

• Inputs: x₁, x₂, x_r with powers P₁, P₂, and P_r,

Channel with two transceivers and a relay: First studied by [Rankov & Wittneben 06]

Gaussian two-way relay channel:

- Inputs: x₁, x₂, x_r with powers P₁, P₂, and P_r,
- Outputs: $\mathbf{y}_r = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}_r$, $\mathbf{y}_i = \mathbf{x}_r + \mathbf{z}_i$, noise variance σ_j^2 ,

Channel with two transceivers and a relay: First studied by [Rankov & Wittneben 06]

Gaussian two-way relay channel:

- Inputs: x₁, x₂, x_r with powers P₁, P₂, and P_r,
- Outputs: y_r = x₁ + x₂ + z_r, y_i = x_r + z_i, noise variance σ²_j,
- Goal: Find the capacity region.

• Treat uplink as a MAC \Rightarrow

$$R_i \leq \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma^2} \right)$$
$$R_1 + R_2 \leq \frac{1}{2} \log \left(1 + \frac{P_1 + P_2}{\sigma^2} \right),$$

• Treat uplink as a MAC \Rightarrow

$$R_i \le \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma^2} \right)$$
$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{P_1 + P_2}{\sigma^2} \right),$$

• Treat downlink as a BC \Rightarrow

$$R_1 \le \frac{1}{2} \log \left(1 + \frac{p_1}{\sigma_1^2} \right)$$
$$R_2 \le \frac{1}{2} \log \left(1 + \frac{p_2}{\sigma_2^2 + p_1} \right)$$

with $p_1 + p_2 \leq P_r$,

• Treat uplink as a MAC \Rightarrow

$$R_i \le \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma^2} \right)$$
$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{P_1 + P_2}{\sigma^2} \right)$$

• Treat downlink as a BC \Rightarrow

$$R_1 \le \frac{1}{2} \log \left(1 + \frac{p_1}{\sigma_1^2} \right)$$
$$R_2 \le \frac{1}{2} \log \left(1 + \frac{p_2}{\sigma_2^2 + p_1} \right)$$

with $p_1 + p_2 \leq P_r$,

• Achievable region: intersection

• Treat uplink as a MAC \Rightarrow

$$R_i \le \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma^2} \right)$$
$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{P_1 + P_2}{\sigma^2} \right),$$

• Treat downlink as a BC \Rightarrow

$$R_1 \leq \frac{1}{2} \log \left(1 + \frac{p_1}{\sigma_1^2} \right)$$
$$R_2 \leq \frac{1}{2} \log \left(1 + \frac{p_2}{\sigma_2^2 + p_1} \right)$$

with $p_1 + p_2 \leq P_r$,

- Achievable region: intersection
- Cut-set bound:

$$\begin{split} R_i &\leq \\ \min\left\{ \frac{1}{2} \log\left(1 + \frac{P_i}{\sigma^2}\right), \frac{1}{2} \log\left(1 + \frac{P_r}{\sigma_2^2}\right) \right] \end{split}$$

Bi-Directional Communications

• Treat uplink as a MAC \Rightarrow

$$R_i \le \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma^2} \right)$$
$$R_1 + R_2 \le \frac{1}{2} \log \left(1 + \frac{P_1 + P_2}{\sigma^2} \right),$$

• Treat downlink as a BC \Rightarrow

$$R_{1} \leq \frac{1}{2} \log \left(1 + \frac{p_{1}}{\sigma_{1}^{2}} \right)$$
$$R_{2} \leq \frac{1}{2} \log \left(1 + \frac{p_{2}}{\sigma_{2}^{2} + p_{1}} \right)$$

with $p_1 + p_2 \leq P_r$,

- Achievable region: intersection
- Cut-set bound:

$$R_i \leq \min\left\{\frac{1}{2}\log\left(1 + \frac{P_i}{\sigma^2}\right), \frac{1}{2}\log\left(1 + \frac{P_r}{\sigma^2_2}\right)\right\}$$

Bi-Directional Communications

 \mathbf{z}_{2}

Sum-rate

Sum-rate

Let us focus on the sum-rate $R_{\Sigma} = R_1 + R_2$:

• simplifying assumption: $P_1 = P_2 = P_r = P$, $\sigma_1^2 = \sigma_2^2 = \sigma^2 = 1$,

Sum-rate

Let us focus on the sum-rate $R_{\Sigma} = R_1 + R_2$:

- simplifying assumption: $P_1 = P_2 = P_r = P$, $\sigma_1^2 = \sigma_2^2 = \sigma^2 = 1$,
- MAC: $R_{\Sigma} \leq \frac{1}{2} \log(1+2P)$,

Sum-rate

Let us focus on the sum-rate $R_{\Sigma} = R_1 + R_2$:

- simplifying assumption: $P_1 = P_2 = P_r = P$, $\sigma_1^2 = \sigma_2^2 = \sigma^2 = 1$,
- MAC: $R_{\Sigma} \leq \frac{1}{2} \log(1+2P)$,
- BC: $R_{\Sigma} \leq \frac{1}{2} \log(1+P)$,
Sum-rate

Let us focus on the sum-rate $R_{\Sigma} = R_1 + R_2$:

- simplifying assumption: $P_1 = P_2 = P_r = P$, $\sigma_1^2 = \sigma_2^2 = \sigma^2 = 1$,
- MAC: $R_{\Sigma} \leq \frac{1}{2} \log(1+2P)$,
- BC: $R_{\Sigma} \leq \frac{1}{2} \log(1+P)$,
- $\Rightarrow \max R_{DF} = \frac{1}{2}\log(1+P)$

Sum-rate

Let us focus on the sum-rate $R_{\Sigma} = R_1 + R_2$:

- simplifying assumption: $P_1 = P_2 = P_r = P$, $\sigma_1^2 = \sigma_2^2 = \sigma^2 = 1$,
- MAC: $R_{\Sigma} \leq \frac{1}{2} \log(1+2P)$,
- BC: $R_{\Sigma} \leq \frac{1}{2} \log(1+P)$,
- $\Rightarrow \max R_{DF} = \frac{1}{2}\log(1+P)$
 - Question: How to improve?

• Treat uplink as a MAC \Rightarrow $R_{\Sigma} \leq \frac{1}{2} \log(1 + 2P).$

- Treat uplink as a MAC \Rightarrow $R_{\Sigma} \leq \frac{1}{2} \log(1+2P).$
- Relay obtains $\mathbf{x}_1(m_1)$ and $\mathbf{x}_2(m_1)$.

- Treat uplink as a MAC \Rightarrow $R_{\Sigma} \leq \frac{1}{2} \log(1+2P).$
- Relay obtains $\mathbf{x}_1(m_1)$ and $\mathbf{x}_2(m_1)$.
- NC: Relay calculates $m_r = m_1 \oplus m_2$ (rate $R_r = \max\{R_1, R_2\}$), and sends $\mathbf{x}_r(m_r)$,

- Treat uplink as a MAC \Rightarrow $R_{\Sigma} \leq \frac{1}{2} \log(1+2P).$
- Relay obtains $\mathbf{x}_1(m_1)$ and $\mathbf{x}_2(m_1)$.
- NC: Relay calculates $m_r = m_1 \oplus m_2$ (rate $R_r = \max\{R_1, R_2\}$), and sends $\mathbf{x}_r(m_r)$,
- Node *i* decodes $\mathbf{x}_r(m_r)$ and calculates $m_j = m_r \oplus m_i$,

- Treat uplink as a MAC \Rightarrow $R_{\Sigma} \leq \frac{1}{2} \log(1+2P).$
- Relay obtains $\mathbf{x}_1(m_1)$ and $\mathbf{x}_2(m_1)$.
- NC: Relay calculates $m_r = m_1 \oplus m_2$ (rate $R_r = \max\{R_1, R_2\}$), and sends $\mathbf{x}_r(m_r)$,
- Node i decodes x_r(m_r) and calculates m_j = m_r ⊕ m_i,
- $\Rightarrow R_r \le \frac{1}{2}\log(1+P) \Rightarrow R_{\Sigma} \le \log(1+P)$

- Treat uplink as a MAC \Rightarrow $R_{\Sigma} \leq \frac{1}{2} \log(1+2P).$
- Relay obtains $\mathbf{x}_1(m_1)$ and $\mathbf{x}_2(m_1)$.
- NC: Relay calculates $m_r = m_1 \oplus m_2$ (rate $R_r = \max\{R_1, R_2\}$), and sends $\mathbf{x}_r(m_r)$,
- Node i decodes x_r(m_r) and calculates m_j = m_r ⊕ m_i,
- $\Rightarrow R_r \le \frac{1}{2}\log(1+P) \Rightarrow R_{\Sigma} \le \log(1+P)$
- $\Rightarrow R_{NC} = \frac{1}{2}\log(1+2P) \text{ (alternative:} BC \text{ with side info.)}$

- Treat uplink as a MAC \Rightarrow $R_{\Sigma} \leq \frac{1}{2} \log(1+2P).$
- Relay obtains $\mathbf{x}_1(m_1)$ and $\mathbf{x}_2(m_1)$.
- NC: Relay calculates $m_r = m_1 \oplus m_2$ (rate $R_r = \max\{R_1, R_2\}$), and sends $\mathbf{x}_r(m_r)$,
- Node i decodes x_r(m_r) and calculates m_j = m_r ⊕ m_i,
- $\Rightarrow R_r \le \frac{1}{2}\log(1+P) \Rightarrow R_{\Sigma} \le \log(1+P)$
- $\Rightarrow R_{NC} = \frac{1}{2}\log(1+2P) \text{ (alternative:} BC \text{ with side info.)}$
 - Good at low SNR, but not at high SNR

- Treat uplink as a MAC \Rightarrow $R_{\Sigma} \leq \frac{1}{2} \log(1+2P).$
- Relay obtains $\mathbf{x}_1(m_1)$ and $\mathbf{x}_2(m_1)$.
- NC: Relay calculates $m_r = m_1 \oplus m_2$ (rate $R_r = \max\{R_1, R_2\}$), and sends $\mathbf{x}_r(m_r)$,
- Node *i* decodes $\mathbf{x}_r(m_r)$ and calculates $m_j = m_r \oplus m_i$,
- $\Rightarrow R_r \le \frac{1}{2}\log(1+P) \Rightarrow R_{\Sigma} \le \log(1+P)$
- $\Rightarrow R_{NC} = \frac{1}{2}\log(1+2P) \text{ (alternative:} BC \text{ with side info.)}$
 - Good at low SNR, but not at high SNR
 - Further improvement?

Important insight: Relay does not need to decode the messages!

Important insight: Relay does not need to decode the messages!

Important insight: Relay does not need to decode the messages!

Example: Binary additive noiseless channel

• Inputs: $x_1, x_2, x_r \in \mathbb{F}_2$,

Important insight: Relay does not need to decode the messages!

- Inputs: $x_1, x_2, x_r \in \mathbb{F}_2$,
- Outputs: $y_r = x_1 \oplus x_2$, $y_i = x_r$,

Important insight: Relay does not need to decode the messages!

- Inputs: $x_1, x_2, x_r \in \mathbb{F}_2$,
- Outputs: $y_r = x_1 \oplus x_2$, $y_i = x_r$,
- NC: Relay decodes x_1 then x_2 (two transmissions), and constructs $x_r = x_1 \oplus x_2$

Important insight: Relay does not need to decode the messages!

- Inputs: $x_1, x_2, x_r \in \mathbb{F}_2$,
- Outputs: $y_r = x_1 \oplus x_2$, $y_i = x_r$,
- NC: Relay decodes x_1 then x_2 (two transmissions), and constructs $x_r = x_1 \oplus x_2$
- Additive binary-noiseless channel: Relay can decode x_r = x₁ ⊕ x₂ directly (one transmission!),

Important insight: Relay does not need to decode the messages!

- Inputs: $x_1, x_2, x_r \in \mathbb{F}_2$,
- Outputs: $y_r = x_1 \oplus x_2$, $y_i = x_r$,
- NC: Relay decodes x_1 then x_2 (two transmissions), and constructs $x_r = x_1 \oplus x_2$
- Additive binary-noiseless channel: Relay can decode x_r = x₁ ⊕ x₂ directly (one transmission!),
- But: Physical channels are not binary and not noiseless!

Important insight: Relay does not need to decode the messages!

- Inputs: $x_1, x_2, x_r \in \mathbb{F}_2$,
- Outputs: $y_r = x_1 \oplus x_2$, $y_i = x_r$,
- NC: Relay decodes x_1 then x_2 (two transmissions), and constructs $x_r = x_1 \oplus x_2$
- Additive binary-noiseless channel: Relay can decode x_r = x₁ ⊕ x₂ directly (one transmission!),
- But: Physical channels are not binary and not noiseless!
- However: A binary-noiseless approximation exists!

Important insight: Relay does not need to decode the messages!

Example: Binary additive noiseless channel

- Inputs: $x_1, x_2, x_r \in \mathbb{F}_2$,
- Outputs: $y_r = x_1 \oplus x_2$, $y_i = x_r$,
- NC: Relay decodes x_1 then x_2 (two transmissions), and constructs $x_r = x_1 \oplus x_2$
- Additive binary-noiseless channel: Relay can decode x_r = x₁ ⊕ x₂ directly (one transmission!),
- But: Physical channels are not binary and not noiseless!
- However: A binary-noiseless approximation exists!

[Avestimehr et al. 07]

Analyse using the Linear Deterministic (LD) Model

Outline

1 Two-way channel

2 Two-way relay channel The linear-deterministic approximation Lattice codes

Multi-way relay channel Multi-pair Two-way Relay Channel Multi-way Relay Channel

4 Multi-way Channel

• Let x and z have unit power and $y = \sqrt{P}x + z$,

- Let x and z have unit power and $y = \sqrt{P}x + z$,
- Write the binary representation

$$y = 2^{\frac{1}{2}\log(P)} \sum_{i=-\infty}^{\infty} x_i 2^{-i} + \sum_{i=-\infty}^{\infty} z_i 2^{-i}$$

- Let x and z have unit power and $y = \sqrt{P}x + z$,
- Write the binary representation

$$y = 2^{\frac{1}{2}\log(P)} \sum_{i=-\infty}^{\infty} x_i 2^{-i} + \sum_{i=-\infty}^{\infty} z_i 2^{-i}$$
$$\approx 2^{\frac{1}{2}\log(P)} \sum_{i=1}^{\infty} x_i 2^{-i} + \sum_{i=-\infty}^{\infty} z_i 2^{-i} \quad \text{assuming } |x| \le 1$$

- Let x and z have unit power and $y = \sqrt{P}x + z$,
- Write the binary representation

$$y = 2^{\frac{1}{2}\log(P)} \sum_{i=-\infty}^{\infty} x_i 2^{-i} + \sum_{i=-\infty}^{\infty} z_i 2^{-i}$$

$$\approx 2^{\frac{1}{2}\log(P)} \sum_{i=1}^{\infty} x_i 2^{-i} + \sum_{i=-\infty}^{\infty} z_i 2^{-i} \quad \text{assuming } |x| \le 1$$

$$\approx 2^{\frac{1}{2}\log(P)} \sum_{i=1}^{\infty} x_i 2^{-i} + \sum_{i=1}^{\infty} z_i 2^{-i} \quad \text{assuming } |z| < 1$$

- Let x and z have unit power and $y = \sqrt{P}x + z$,
- Write the binary representation

$$\begin{split} y &= 2^{\frac{1}{2}\log(P)} \sum_{i=-\infty}^{\infty} x_i 2^{-i} + \sum_{i=-\infty}^{\infty} z_i 2^{-i} \\ &\approx 2^{\frac{1}{2}\log(P)} \sum_{i=1}^{\infty} x_i 2^{-i} + \sum_{i=-\infty}^{\infty} z_i 2^{-i} \quad \text{assuming } |x| \le 1 \\ &\approx 2^{\frac{1}{2}\log(P)} \sum_{i=1}^{\infty} x_i 2^{-i} + \sum_{i=1}^{\infty} z_i 2^{-i} \quad \text{assuming } |z| < 1 \\ &\approx 2^n \sum_{i=1}^{\infty} x_i 2^{-i} + \sum_{i=1}^{\infty} z_i 2^{-i} \quad \text{defining } n = \left\lceil \frac{1}{2}\log(P) \right\rceil \end{split}$$

- Let x and z have unit power and $y = \sqrt{P}x + z$,
- Write the binary representation

$$\begin{split} y &= 2^{\frac{1}{2}\log(P)} \sum_{i=-\infty}^{\infty} x_i 2^{-i} + \sum_{i=-\infty}^{\infty} z_i 2^{-i} \\ &\approx 2^{\frac{1}{2}\log(P)} \sum_{i=1}^{\infty} x_i 2^{-i} + \sum_{i=-\infty}^{\infty} z_i 2^{-i} \quad \text{assuming } |x| \le 1 \\ &\approx 2^{\frac{1}{2}\log(P)} \sum_{i=1}^{\infty} x_i 2^{-i} + \sum_{i=1}^{\infty} z_i 2^{-i} \quad \text{assuming } |z| < 1 \\ &\approx 2^n \sum_{i=1}^{\infty} x_i 2^{-i} + \sum_{i=1}^{\infty} z_i 2^{-i} \quad \text{defining } n = \left\lceil \frac{1}{2}\log(P) \right\rceil \\ &= 2^n \sum_{i=1}^n x_i 2^{-i} + \sum_{i=1}^{\infty} (x_{i+n} + z_i) 2^{-i}, \quad \text{regrouping} \end{split}$$

• Ignore the noisy bits \Rightarrow $y \approx 2^n \sum_{i=1}^n x_i 2^{-i}$

- Ignore the noisy bits \Rightarrow $y \approx 2^n \sum_{i=1}^n x_i 2^{-i}$
- \Rightarrow Channel can be modelled as n bit-pipes!

Impact of noise modelled by clipping the least-significant bits

- Ignore the noisy bits \Rightarrow $y \approx 2^n \sum_{i=1}^n x_i 2^{-i}$
- \Rightarrow Channel can be modelled as n bit-pipes!
- $\Rightarrow C \approx n = \left\lceil \frac{1}{2} \log(P) \right\rceil$

Impact of noise modelled by clipping the least-significant bits

- Ignore the noisy bits \Rightarrow $y \approx 2^n \sum_{i=1}^n x_i 2^{-i}$
- \Rightarrow Channel can be modelled as n bit-pipes!
- $\Rightarrow C \approx n = \left\lceil \frac{1}{2} \log(P) \right\rceil$
- A good approximation at high SNR

Impact of noise modelled by clipping the least-significant bits

- Ignore the noisy bits \Rightarrow $y \approx 2^n \sum_{i=1}^n x_i 2^{-i}$
- \Rightarrow Channel can be modelled as n bit-pipes!
- $\Rightarrow C \approx n = \left\lceil \frac{1}{2} \log(P) \right\rceil$
 - A good approximation at high SNR

Deterministic P2P

Impact of noise modelled by clipping the least-significant bits

A Gaussian P2P can be approximated as a binary channel with input $\mathbf{x} = \begin{bmatrix} x_1, \ x_2, \cdots, x_q \end{bmatrix}^T$ and output $\mathbf{y} = \mathbf{S}^{q-n} \mathbf{x}$ where $q \ge n = \lceil \frac{1}{2} \log(P) \rceil$ and $\mathbf{S} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{I} & \mathbf{0} \end{bmatrix}$ is a down-ward shift matrix.

Similar approximation can be applied to the:

• MAC:

$$\mathbf{y} = \mathbf{S}^{q-n_1} \mathbf{x}_1 \oplus \mathbf{S}^{q-n_2} \mathbf{x}_2$$
where $n_i = \left\lceil \frac{1}{2} \log(P_i) \right\rceil$ and
 $q = \max\{n_1, n_2\},$

Similar approximation can be applied to the:

• MAC:

$$\mathbf{y} = \mathbf{S}^{q-n_1} \mathbf{x}_1 \oplus \mathbf{S}^{q-n_2} \mathbf{x}_2$$
where $n_i = \left\lceil \frac{1}{2} \log(P_i) \right\rceil$ and
 $q = \max\{n_1, n_2\},$

Similar approximation can be applied to the:

• MAC: $\mathbf{y} = \mathbf{S}^{q-n_1} \mathbf{x}_1 \oplus \mathbf{S}^{q-n_2} \mathbf{x}_2$ where $n_i = \left\lceil \frac{1}{2} \log(P_i) \right\rceil$ and $q = \max\{n_1, n_2\},$

• BC:
$$\mathbf{y}_i = \mathbf{S}^{q-n_i} \mathbf{x}_i$$

Similar approximation can be applied to the:

• MAC: $\mathbf{y} = \mathbf{S}^{q-n_1} \mathbf{x}_1 \oplus \mathbf{S}^{q-n_2} \mathbf{x}_2$ where $n_i = \left\lceil \frac{1}{2} \log(P_i) \right\rceil$ and $q = \max\{n_1, n_2\},$

• BC:
$$\mathbf{y}_i = \mathbf{S}^{q-n_i} \mathbf{x}_i$$

The linear-deterministic approximation

Similar approximation can be applied to the:

- MAC: $\mathbf{y} = \mathbf{S}^{q-n_1} \mathbf{x}_1 \oplus \mathbf{S}^{q-n_2} \mathbf{x}_2$ where $n_i = \left\lceil \frac{1}{2} \log(P_i) \right\rceil$ and $q = \max\{n_1, n_2\},$
- BC: $\mathbf{y}_i = \mathbf{S}^{q-n_i} \mathbf{x}$,
- A very useful tool for studying Gaussian networks

The linear-deterministic approximation

Similar approximation can be applied to the:

- MAC: $\mathbf{y} = \mathbf{S}^{q-n_1} \mathbf{x}_1 \oplus \mathbf{S}^{q-n_2} \mathbf{x}_2$ where $n_i = \left\lceil \frac{1}{2} \log(P_i) \right\rceil$ and $q = \max\{n_1, n_2\},$
- BC: $\mathbf{y}_i = \mathbf{S}^{q-n_i} \mathbf{x}$,
- A very useful tool for studying Gaussian networks
- Obtained insights in an LD network can be extended to corresponding Gaussian networks

- Uplink: MAC with $n_1 = n_2 = n = 4$,
- Node i sends $\mathbf{x}_i \in \mathbf{F}_2^q$,
- Relay receives $\mathbf{S}^{q-n}\mathbf{x}_1 \oplus \mathbf{S}^{q-n}\mathbf{x}_2$,
- x₁ ⊕ x₂ decodable if max{R₁, R₂} ≤ n (send on the most-significant bits)

- Uplink: MAC with $n_1 = n_2 = n = 4$,
- Node i sends $\mathbf{x}_i \in \mathbf{F}_2^q$,
- Relay receives $\mathbf{S}^{q-n}\mathbf{x}_1 \oplus \mathbf{S}^{q-n}\mathbf{x}_2$,
- x₁ ⊕ x₂ decodable if max{R₁, R₂} ≤ n (send on the most-significant bits)

- Downlink: BC with $n_1 = n_2 = n = 4$,
- Relay sends $\mathbf{x}_r = \mathbf{x}_1 \oplus \mathbf{x}_2$ with rate $R_r = \max\{R_1, R_2\}$,
- Node *i* receives $\mathbf{S}^{q-n}\mathbf{x}_r$,
- x_r decodable if R_r ≤ n (send on the most-significant bits),

- Uplink: MAC with $n_1 = n_2 = n = 4$,
- Node i sends $\mathbf{x}_i \in \mathbf{F}_2^q$,
- Relay receives $\mathbf{S}^{q-n}\mathbf{x}_1 \oplus \mathbf{S}^{q-n}\mathbf{x}_2$,
- $\mathbf{x}_1 \oplus \mathbf{x}_2$ decodable if $\max\{R_1, R_2\} \le n$ (send on the most-significant bits)

- Downlink: BC with $n_1 = n_2 = n = 4$,
- Relay sends $\mathbf{x}_r = \mathbf{x}_1 \oplus \mathbf{x}_2$ with rate $R_r = \max\{R_1, R_2\}$,
- Node *i* receives $\mathbf{S}^{q-n}\mathbf{x}_r$,
- \mathbf{x}_r decodable if $R_r \leq n$ (send on the most-significant bits),

Compute-forward (a.k.a. Physical-layer NC)

Relay decodes a function (sum) of the transmit signals, and forwards this sum. Each node can decode the desired signal using its own signal as side information.

Achievable rate max{R₁, R₂} ≤ n = [¹/₂ log(P)].

• Achievable rate $\max\{R_1, R_2\} \le n = \left\lceil \frac{1}{2} \log(P) \right\rceil$.

 $\Rightarrow R_{CF} = 2n = 2\left\lceil \frac{1}{2}\log(P) \right\rceil \approx \log(P)$

- Achievable rate max{R₁, R₂} ≤ n = [¹/₂ log(P)].
- $\Rightarrow R_{CF} = 2n = 2\left\lceil \frac{1}{2}\log(P) \right\rceil \approx \log(P)$
 - vs. $R_{NC} = \frac{1}{2} \log(1 + 2P)$ for network coding!

- Achievable rate max{R₁, R₂} ≤ n = [¹/₂ log(P)].
- $\Rightarrow R_{CF} = 2n = 2\left\lceil \frac{1}{2}\log(P) \right\rceil \approx \log(P)$
 - vs. $R_{NC} = \frac{1}{2} \log(1 + 2P)$ for network coding!

Compute-forward (CF)

CF (almost) doubles the rate in comparison to DF and to NC (at high SNR).

- Achievable rate $\max\{R_1, R_2\} \le n = \left\lceil \frac{1}{2} \log(P) \right\rceil$.
- $\Rightarrow R_{CF} = 2n = 2\left\lceil \frac{1}{2}\log(P) \right\rceil \approx \log(P)$
 - vs. $R_{NC} = \frac{1}{2} \log(1 + 2P)$ for network coding!

Compute-forward (CF)

CF (almost) doubles the rate in comparison to DF and to NC (at high SNR).

How to extend to Gaussian two-way relay channels?

• In CF, relay decodes the sum of input codewords.

- In CF, relay decodes the sum of input codewords.
- Important requirement: Sum of two codewords is a codeword.

- In CF, relay decodes the sum of input codewords.
- Important requirement: Sum of two codewords is a codeword.
- True in the LD channel: XOR of two bits is a bit.

- In CF, relay decodes the sum of input codewords.
- Important requirement: Sum of two codewords is a codeword.
- True in the LD channel: XOR of two bits is a bit.
- Gaussian channels: normally random codes!

- In CF, relay decodes the sum of input codewords.
- Important requirement: Sum of two codewords is a codeword.
- True in the LD channel: XOR of two bits is a bit.
- Gaussian channels: normally random codes!
- sum of two random codewords is not necessarily a codeword!

- In CF, relay decodes the sum of input codewords.
- Important requirement: Sum of two codewords is a codeword.
- True in the LD channel: XOR of two bits is a bit.
- Gaussian channels: normally random codes!
- sum of two random codewords is not necessarily a codeword!
- Now what?

Outline

1 Two-way channel

2 Two-way relay channel The linear-deterministic approximation Lattice codes

Multi-way relay channel Multi-pair Two-way Relay Channel Multi-way Relay Channel

4 Multi-way Channel

Computation

Definition (Computation)

Computation is the process of recovering a function of transmit codewords from a received sequence of symbols after sending the codewords through a channel.

How?

Computation

Definition (Computation)

Computation is the process of recovering a function of transmit codewords from a received sequence of symbols after sending the codewords through a channel.

How?

Computation can be accomplished by using lattice codes.

Idea: Codes located on a grid so that the sum of two codewords is a codeword.

Property: u_1 and u_2 lattice codes $\Rightarrow u_1 + u_2$ lattice code! Examples:

• Z is a one-dimensional lattice

Property: u_1 and u_2 lattice codes $\Rightarrow u_1 + u_2$ lattice code! Examples:

• Z is a one-dimensional lattice

Property: u_1 and u_2 lattice codes $\Rightarrow u_1 + u_2$ lattice code! Examples:

- Z is a one-dimensional lattice
- two codewords: $u_1, u_2 \in \mathbb{Z}$,

Property: u_1 and u_2 lattice codes $\Rightarrow u_1 + u_2$ lattice code! Examples:

- Z is a one-dimensional lattice
- two codewords: $u_1, u_2 \in \mathbb{Z}$,
- $u_1 + u_2 \in \mathbb{Z}$ also a codeword,

Property: u_1 and u_2 lattice codes $\Rightarrow u_1 + u_2$ lattice code! Examples:

- Z is a one-dimensional lattice
- two codewords: $u_1, u_2 \in \mathbb{Z}$,
- $u_1 + u_2 \in \mathbb{Z}$ also a codeword,
- \mathbb{Z}^2 is a 2-dimensional lattice,

Property: u_1 and u_2 lattice codes $\Rightarrow u_1 + u_2$ lattice code! Examples:

- ℤ is a one-dimensional lattice
- two codewords: $u_1, u_2 \in \mathbb{Z}$,
- $u_1 + u_2 \in \mathbb{Z}$ also a codeword,
- \mathbb{Z}^2 is a 2-dimensional lattice,

Nested-lattice codes

Nested lattice codes achieve the capacity $\frac{1}{2}\log(1+P)$ of the P2P channel.

Property: u_1 and u_2 lattice codes $\Rightarrow u_1 + u_2$ lattice code! Examples:

- ℤ is a one-dimensional lattice
- two codewords: $u_1, u_2 \in \mathbb{Z}$,
- $u_1 + u_2 \in \mathbb{Z}$ also a codeword,
- \mathbb{Z}^2 is a 2-dimensional lattice,

Nested-lattice codes

Nested lattice codes achieve the capacity $\frac{1}{2}\log(1+P)$ of the P2P channel.

What is a nested lattice code?

• **x**: Fine lattice Λ_f

x	x	×	×	x
x	x	×	×	x
x	x	×	x	x
x	x	×	x	x
x	x	x	x	x

- **x**: Fine lattice Λ_f
- Coarse lattice $\Lambda_c \subset \Lambda_f$

x	x	x	x	×
x	x	x	×	×
x	x		×	×
x	x	x	x	×
x	x	x	x	×

- **x**: Fine lattice Λ_f
- Coarse lattice $\Lambda_c \subset \Lambda_f$
- Modulo Λ_c

- **x**: Fine lattice Λ_f
- Coarse lattice $\Lambda_c \subset \Lambda_f$
- Modulo Λ_c
- Nested lattice code

- **x**: Fine lattice Λ_f
- Coarse lattice $\Lambda_c \subset \Lambda_f$
- Modulo Λ_c
- Nested lattice code
- Power Constraint satisfied by the choice of Λ_c

• Nodes use nested lattice codes with rate $R_1 = R_2 = R$ and power P,

×	×	x	×	×
x	x	x	x	×
x	x	x	×	×
x	x	x	x	×
x	x	x	x	×

- Nodes use nested lattice codes with rate $R_1 = R_2 = R$ and power P,
- send x_1 and x_2 ,

- Nodes use nested lattice codes with rate $R_1 = R_2 = R$ and power P,
- send x₁ and x₂,
- Relay receives $\mathbf{y}_r = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}_r$,

- Nodes use nested lattice codes with rate $R_1 = R_2 = R$ and power P,
- send x₁ and x₂,
- Relay receives $\mathbf{y}_r = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}_r$,
- calculates $\mathbf{y}'_r = \mathbf{y}_r \mod \Lambda_c$,

- Nodes use nested lattice codes with rate $R_1 = R_2 = R$ and power P,
- send x₁ and x₂,
- Relay receives $\mathbf{y}_r = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}_r$,
- calculates $\mathbf{y}'_r = \mathbf{y}_r \mod \Lambda_c$,
- decode to the nearest codeword,

- Nodes use nested lattice codes with rate $R_1 = R_2 = R$ and power P,
- send x₁ and x₂,
- Relay receives $\mathbf{y}_r = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}_r$,
- calculates $\mathbf{y}'_r = \mathbf{y}_r \mod \Lambda_c$,
- decode to the nearest codeword,
- relay obtains $\mathbf{x}_r = (\mathbf{x}_1 + \mathbf{x}_2) \mod \Lambda_c$

- Nodes use nested lattice codes with rate $R_1 = R_2 = R$ and power P,
- send x₁ and x₂,
- Relay receives $\mathbf{y}_r = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}_r$,
- calculates $\mathbf{y}'_r = \mathbf{y}_r \mod \Lambda_c$,
- decode to the nearest codeword,
- relay obtains $\mathbf{x}_r = (\mathbf{x}_1 + \mathbf{x}_2) \mod \Lambda_c$

Remarks:

- \mathbf{x}_r belongs to the same nested lattice codebook
- \Rightarrow $R_r = R$ (same rate as \mathbf{x}_1 and \mathbf{x}_2)

- Nodes use nested lattice codes with rate $R_1 = R_2 = R$ and power P,
- send \mathbf{x}_1 and \mathbf{x}_2 ,
- Relay receives $\mathbf{y}_r = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}_r$,
- calculates $\mathbf{y}'_r = \mathbf{y}_r \mod \Lambda_c$,
- decode to the nearest codeword,
- relay obtains $\mathbf{x}_r = (\mathbf{x}_1 + \mathbf{x}_2) \mod \Lambda_c$

Remarks:

- \mathbf{x}_r belongs to the same nested lattice codebook
- \Rightarrow $R_r = R$ (same rate as \mathbf{x}_1 and \mathbf{x}_2)

Computation rate [Nazer & Gastpar 11]

Relay can compute $(\mathbf{x}_1 + \mathbf{x}_2) \mod \Lambda_c$ as long as $R \leq \left[\frac{1}{2} \log \left(\frac{1}{2} + P\right)\right]^+$.

• Relay sends \mathbf{x}_r (rate R),

x	×	x	x	×
x	\mathbf{x}_r x	x	x ₁ x	×
x	x	x	x ₂ x	x
×	x	x	x	x
×	x	x	x	x

- Relay sends \mathbf{x}_r (rate R),
- node *i* decodes $\mathbf{x}_r \Rightarrow R \leq \frac{1}{2} \log(1+P)$.

x	×	x	x	×
x	\mathbf{x}_r x	x	x ₁ x	×
x	x	x	x ₂ x	×
x	x	x	x	×
×	x	x	x	x

- Relay sends \mathbf{x}_r (rate R),
- node *i* decodes $\mathbf{x}_r \Rightarrow R \leq \frac{1}{2} \log(1+P)$.
- Can \mathbf{x}_j be recovered from \mathbf{x}_r ?

x	×	x	x	x
×	\mathbf{x}_r	x	x ₁ x	×
x	x	x	x ₂ x	x
×	x	x	x	x
×	x	x	x	x

- Relay sends \mathbf{x}_r (rate R),
- node *i* decodes $\mathbf{x}_r \Rightarrow$ $R \leq \frac{1}{2} \log(1+P).$
- Can \mathbf{x}_j be recovered from \mathbf{x}_r ?
- Yes! Node *i* calculates $(\mathbf{x}_r \mathbf{x}_i) \mod \Lambda_c$,

	x	x	x	x	x
	x	\mathbf{x}_r	x	\mathbf{x}_1 \mathbf{x}	x
x	$r - \mathbf{x}_1$	x	x	x ₂	x
	x	×	X	×	x
	x	x	x	x	×

- Relay sends \mathbf{x}_r (rate R),
- node *i* decodes $\mathbf{x}_r \Rightarrow R \leq \frac{1}{2} \log(1+P)$.
- Can \mathbf{x}_j be recovered from \mathbf{x}_r ?
- Yes! Node *i* calculates

 (x_r x_i) mod Λ_c,
- CF rate constraints $R = \max\{R_1, R_2\}$

$$\begin{split} R &\leq \left[\frac{1}{2}\log\left(\frac{1}{2}+P\right)\right]^+ \quad \text{uplink} \\ R &\leq \frac{1}{2}\log\left(1+P\right) \quad \text{downlink} \end{split}$$

	x	×	×	×	x
	x	\mathbf{x}_r x	×	\mathbf{x}_1 \mathbf{x}	x
x	$\mathbf{x}_r - \mathbf{x}_1$	x	x	X2 X	x
	x	×	x	×	x
	x	x	x	x	×

- Relay sends \mathbf{x}_r (rate R),
- node *i* decodes $\mathbf{x}_r \Rightarrow$ $R \leq \frac{1}{2} \log(1+P).$
- Can \mathbf{x}_j be recovered from \mathbf{x}_r ?
- Yes! Node *i* calculates $(\mathbf{x}_r \mathbf{x}_i) \mod \Lambda_c$,
- CF rate constraints $R = \max\{R_1, R_2\}$

$$\begin{split} R &\leq \left[\frac{1}{2}\log\left(\frac{1}{2}+P\right)\right]^+ \quad \text{uplink} \\ R &\leq \frac{1}{2}\log\left(1+P\right) \quad \text{downlink} \end{split}$$

Max sum-rate for CF: $R_{CF} = \left[\log\left(\frac{1}{2} + P\right)\right]^+$

	x	x	×	x	x
	x	\mathbf{x}_r x	x	\mathbf{x}_1 x	×
x	$\mathbf{x}_r - \mathbf{x}_1$	x	x	x ₂	×
	x	X	x	×	×
	x	x	x	x	x

1

т

$$R_{DF} = \frac{1}{2}\log(1+P)$$
$$R_{NC} = \frac{1}{2}\log(1+2P)$$
$$R_{CF} = \left[\log\left(\frac{1}{2}+P\right)\right]^+$$

$$R_{DF} = \frac{1}{2} \log (1+P)$$
$$R_{NC} = \frac{1}{2} \log (1+2P)$$
$$R_{CF} = \left[\log \left(\frac{1}{2}+P\right) \right]^+$$

• CF doubles the rate (at high SNR),

$$R_{DF} = \frac{1}{2} \log (1+P)$$
$$R_{NC} = \frac{1}{2} \log (1+2P)$$
$$R_{CF} = \left[\log \left(\frac{1}{2}+P\right) \right]^+$$

- CF doubles the rate (at high SNR),
- + Close to capacity at high SNR
 - zero rate at low SNR

$$R_{DF} = \frac{1}{2} \log (1+P)$$
$$R_{NC} = \frac{1}{2} \log (1+2P)$$
$$R_{CF} = \left[\log \left(\frac{1}{2}+P\right) \right]^+$$

- CF doubles the rate (at high SNR),
- + Close to capacity at high SNR
- zero rate at low SNR
- Best scheme: combination of CF and NC.

$$R_1, R_2 \le \left[\frac{1}{2}\log\left(\frac{1}{2} + P\right)\right]^+$$

• CF achieves

$$R_1, R_2 \le \left[\frac{1}{2}\log\left(\frac{1}{2} + P\right)\right]^+$$

highest sum-rate

• CF achieves

$$R_1, R_2 \le \left[\frac{1}{2}\log\left(\frac{1}{2} + P\right)\right]^+$$

- highest sum-rate
- But: NC is better in some regions,

• CF achieves

$$R_1, R_2 \le \left[\frac{1}{2}\log\left(\frac{1}{2} + P\right)\right]^+$$

- highest sum-rate
- But: NC is better in some regions,
- Best: Time-sharing NC and CF,

What happens if $P_1 \ge P_2$ and P_r arbitrary?

What happens if $P_1 \ge P_2$ and P_r arbitrary? Node 1 • Reduce P_1 to P_2 and use CF: ÷

$$R_1, R_2 \le \left[\frac{1}{2}\log\left(\frac{1}{2} + P_2\right)\right]^2$$
$$R_1, R_2 \le \frac{1}{2}\log\left(1 + P_r\right)$$

What happens if $P_1 \ge P_2$ and P_r arbitrary?

• Reduce P_1 to P_2 and use CF:

$$R_1, R_2 \le \left[\frac{1}{2}\log\left(\frac{1}{2} + P_2\right)\right]^+$$
$$R_1, R_2 \le \frac{1}{2}\log\left(1 + P_r\right)$$

• Time-sharing NC and CF,

What happens if $P_1 \ge P_2$ and P_r arbitrary?

• Reduce P_1 to P_2 and use CF:

$$R_1, R_2 \le \left[\frac{1}{2}\log\left(\frac{1}{2} + P_2\right)\right]^+$$
$$R_1, R_2 \le \frac{1}{2}\log\left(1 + P_r\right)$$

- Time-sharing NC and CF,
- Far from sum-capacity!
- Can we do better?

Back to LD

- $P_1 \ge P_2 \Rightarrow n_1 \ge n_2$,
- use n_2 bits for CF,
- use $n_1 n_2$ bits for DF,
- R_1 and R_2 achievable if $R_1 \le n_1$ and $R_2 \le n_2$

Back to LD

- $P_1 \ge P_2 \Rightarrow n_1 \ge n_2$,
- use n_2 bits for CF,
- use $n_1 n_2$ bits for DF,
- R₁ and R₂ achievable if R₁ ≤ n₁ and R₂ ≤ n₂

- n_r bit-pipes,
- node 2 gets x₁,
- node 1 gets x₂,
- R_1 and R_2 achievable if $\max\{R_1, R_2\} \le n_r$,

• Achievable rates: $R_1 \leq \min\{n_1, n_r\}$ and $R_2 \leq \min\{n_2, n_r\}$.

- Achievable rates: $R_1 \leq \min\{n_1, n_r\}$ and $R_2 \leq \min\{n_2, n_r\}$.
- $\Rightarrow R_1 \leq \lceil \frac{1}{2} \log(\min\{P_1, P_r\}) \rceil, R_2 \leq \lceil \frac{1}{2} \log(\min\{P_2, P_r\}) \rceil,$

- Achievable rates: $R_1 \leq \min\{n_1, n_r\}$ and $R_2 \leq \min\{n_2, n_r\}$.
- $\Rightarrow R_1 \le \left\lceil \frac{1}{2} \log(\min\{P_1, P_r\}) \right\rceil, R_2 \le \left\lceil \frac{1}{2} \log(\min\{P_2, P_r\}) \right\rceil,$
 - · asymmetric rates can be achieved by combining CF and DF

- Achievable rates: $R_1 \leq \min\{n_1, n_r\}$ and $R_2 \leq \min\{n_2, n_r\}$.
- $\Rightarrow R_1 \le \left\lceil \frac{1}{2} \log(\min\{P_1, P_r\}) \right\rceil, R_2 \le \left\lceil \frac{1}{2} \log(\min\{P_2, P_r\}) \right\rceil,$
 - asymmetric rates can be achieved by combining CF and DF

How to extend to Gaussian two-way relay channels?

Combination of CF and DF

• Node 1: $\mathbf{x}_1 = \sqrt{P_d} \mathbf{x}_{1d} + \sqrt{P_c} x_{1c}$

x_{1c} x_{1d}

 \mathbf{x}_1

Combination of CF and DF

- Node 1: $\mathbf{x}_1 = \sqrt{P_d}\mathbf{x}_{1d} + \sqrt{P_c}x_{1c}$
- Node 2: $\mathbf{x}_2 = \sqrt{P_c} \mathbf{x}_{2c}$

Combination of CF and DF

- Node 1: $\mathbf{x}_1 = \sqrt{P_d}\mathbf{x}_{1d} + \sqrt{P_c}x_{1c}$
- Node 2: $\mathbf{x}_2 = \sqrt{P_c} \mathbf{x}_{2c}$
- Powers: $P_c + P_d \leq P_1$, $P_c \leq P_2$.

Combination of CF and DF

- Node 1: $\mathbf{x}_1 = \sqrt{P_d}\mathbf{x}_{1d} + \sqrt{P_c}x_{1c}$
- Node 2: $\mathbf{x}_2 = \sqrt{P_c} \mathbf{x}_{2c}$
- Powers: $P_c + P_d \leq P_1$, $P_c \leq P_2$.
- Relay receives:

 $\mathbf{y}_r = \sqrt{P_d} \mathbf{x}_{1d} + \sqrt{P_c} (x_{1c} + x_{2c}) + \mathbf{z}_r,$

Combination of CF and DF

- Node 1: $\mathbf{x}_1 = \sqrt{P_d}\mathbf{x}_{1d} + \sqrt{P_c}x_{1c}$
- Node 2: $\mathbf{x}_2 = \sqrt{P_c} \mathbf{x}_{2c}$
- Powers: $P_c + P_d \leq P_1$, $P_c \leq P_2$.
- Relay receives:

 $\mathbf{y}_r = \sqrt{P_d} \mathbf{x}_{1d} + \sqrt{P_c} (x_{1c} + x_{2c}) + \mathbf{z}_r,$

• decodes $\mathbf{x}_{rd} = \mathbf{x}_{1d}$ followed by $\mathbf{x}_{rc} = \mathbf{x}_{1c} + \mathbf{x}_{2c}$,

$$\begin{aligned} R_d &\leq \frac{1}{2} \log \left(1 + \frac{P_d}{1 + 2P_c} \right) \\ R_c &\leq \left[\frac{1}{2} \log \left(\frac{1}{2} + P_c \right) \right]^+ \end{aligned}$$

• $\mathbf{x}_r = \sqrt{P_{rc}}\mathbf{x}_{rc} + \sqrt{P_{rd}}\mathbf{x}_{rd}$,

- $\mathbf{x}_r = \sqrt{P_{rc}}\mathbf{x}_{rc} + \sqrt{P_{rd}}\mathbf{x}_{rd}$,
- Powers: $P_{rc} + P_{rd} \leq P_r$,

- $\mathbf{x}_r = \sqrt{P_{rc}}\mathbf{x}_{rc} + \sqrt{P_{rd}}\mathbf{x}_{rd}$,
- Powers: $P_{rc} + P_{rd} \leq P_r$,
- Node *i* receives $\mathbf{y}_i = \sqrt{P_{rc}} \mathbf{x}_{rc} + \sqrt{P_{rd}} \mathbf{x}_{rd} + \mathbf{z}_i$

- $\mathbf{x}_r = \sqrt{P_{rc}}\mathbf{x}_{rc} + \sqrt{P_{rd}}\mathbf{x}_{rd}$,
- Powers: $P_{rc} + P_{rd} \leq P_r$,
- Node *i* receives $\mathbf{y}_i = \sqrt{P_{rc}} \mathbf{x}_{rc} + \sqrt{P_{rd}} \mathbf{x}_{rd} + \mathbf{z}_i$
- both nodes decode x_{rc}, and extract desired CF signal

CF rate region

- $\mathbf{x}_r = \sqrt{P_{rc}}\mathbf{x}_{rc} + \sqrt{P_{rd}}\mathbf{x}_{rd}$,
- Powers: $P_{rc} + P_{rd} \leq P_r$,
- Node *i* receives $\mathbf{y}_i = \sqrt{P_{rc}} \mathbf{x}_{rc} + \sqrt{P_{rd}} \mathbf{x}_{rd} + \mathbf{z}_i$
- both nodes decode x_{rc}, and extract desired CF signal
- and node 2 decodes \mathbf{x}_{rd}

$$R_c \leq \frac{1}{2} \log \left(1 + \frac{P_{rc}}{1 + P_{rd}} \right)$$
$$R_d \leq \frac{1}{2} \log \left(1 + P_{rd} \right)$$

CF/DF

Combining CF and DF achieves $R_1 = R_c + R_d$, $R_2 = R_c$, where

$$R_d \le \min\left\{\frac{1}{2}\log\left(1 + \frac{P_d}{1 + 2P_c}\right), \frac{1}{2}\log\left(1 + P_d\right)\right\}$$
$$R_c \le \min\left\{\left[\frac{1}{2}\log\left(\frac{1}{2} + P_c\right)\right]^+, \frac{1}{2}\log\left(1 + \frac{P_c}{1 + P_d}\right)\right\}$$

for $P_c + P_d \leq P_1$, $P_c \leq P_2$, $P_{rc} + P_{rd} \leq P_r$.

CF/DF

Combining CF and DF achieves $R_1 = R_c + R_d$, $R_2 = R_c$, where

$$R_d \le \min\left\{\frac{1}{2}\log\left(1 + \frac{P_d}{1 + 2P_c}\right), \frac{1}{2}\log\left(1 + P_d\right)\right\}$$
$$R_c \le \min\left\{\left[\frac{1}{2}\log\left(\frac{1}{2} + P_c\right)\right]^+, \frac{1}{2}\log\left(1 + \frac{P_c}{1 + P_d}\right)\right\}$$

for $P_c + P_d \leq P_1$, $P_c \leq P_2$, $P_{rc} + P_{rd} \leq P_r$.

Achieves capacity within a constant gap

Summary

- Key ingredient: CF using lattice codes (physical-layer network coding)
- Best scheme: Combination of CF, DF, and NC,
- Sum-capacity scales as log(P), (optimal scaling)

Summary

- Key ingredient: CF using lattice codes (physical-layer network coding)
- Best scheme: Combination of CF, DF, and NC,
- Sum-capacity scales as log(P), (optimal scaling)
- Consequence: Using a relay as a two-way relay doubles the rate of communication, which is of interest for applications with a delay constraint

Outline

1 Two-way channel

2 Two-way relay channel

3 Multi-way relay channel Multi-pair Two-way Relay Channel Multi-way Relay Channel

4 Multi-way Channel

Multiple users communicating pair-wise through a relay [S. *et al.* 09]

• Combination of CF and DF,

Multiple users communicating pair-wise through a relay [S. *et al.* 09]

- Combination of CF and DF,
- In each pair (i_k, j_k) , one node sends $\mathbf{x}_{i_k d} + \mathbf{x}_{i_k c}$ and the other $\mathbf{x}_{j_k c}$,

Multiple users communicating pair-wise through a relay [S. *et al.* 09]

- Combination of CF and DF,
- In each pair (i_k, j_k) , one node sends $\mathbf{x}_{i_k d} + \mathbf{x}_{i_k c}$ and the other $\mathbf{x}_{j_k c}$,
- Relay decodes $\mathbf{x}_{i_k d}$ then $\mathbf{x}_{i_k c} + \mathbf{x}_{j_k c}$ of pair k, then pair $k' \dots$

$$R_{kd} \le \frac{1}{2} \log \left(1 + \frac{P_{kd}}{1 + 2P_{kc} + \sum_{\ell=k+1}^{K} (P_{\ell d} + 2P_{\ell c})} \right)$$
$$R_{kc} \le \left[\frac{1}{2} \log \left(\frac{1}{2} + \frac{P_{kc}}{1 + \sum_{\ell=k+1}^{K} (P_{\ell d} + 2P_{\ell c})} \right) \right]^+$$

• Relay forwards a scaled sum of the decoded signals

- Relay forwards a scaled sum of the decoded signals
- Nodes in pair k decode the signals successively, starting with pair 1 ending with pair k

- Relay forwards a scaled sum of the decoded signals
- Nodes in pair k decode the signals successively, starting with pair 1 ending with pair k
- within a constant of the cut-set bound in the Gaussian case,

The multi-pair case is similar to the single pair case:

- Sum-rate scaling of log(P), (optimal scaling)
- Cut-set bounds are nearly tight. Achievability requires:
- CF: Bi-directional communication between two nodes via the relay, and
- DF: Uni-directional communication from one user to the other via the relay.

The multi-pair case is similar to the single pair case:

- Sum-rate scaling of log(P), (optimal scaling)
- Cut-set bounds are nearly tight. Achievability requires:
- CF: Bi-directional communication between two nodes via the relay, and
- DF: Uni-directional communication from one user to the other via the relay.

Do we require new ingredients in multi-user cases?

Outline

1 Two-way channel

2 Two-way relay channel

3 Multi-way relay channel Multi-pair Two-way Relay Channel Multi-way Relay Channel

4 Multi-way Channel

Channel with multiple users communicating in all directions via a relay [Lee & Lim 09]

• Cut-set bound scaling of $\frac{3}{2}\log(P)$

- Cut-set bound scaling of $\frac{3}{2}\log(P)$
- Genie-aided bound scaling of $\log(P)$ [C. & S. 11]

- Cut-set bound scaling of $\frac{3}{2}\log(P)$
- Genie-aided bound scaling of $\log(P)$ [C. & S. 11]
- Cut-set bounds are not tight!

- Cut-set bound scaling of $\frac{3}{2}\log(P)$
- Genie-aided bound scaling of $\log(P)$ [C. & S. 11]
- Cut-set bounds are not tight!
- CF achieves the optimal scaling

• CF achieves optimal scaling as in the single and multi-pair case

- CF achieves optimal scaling as in the single and multi-pair case
- Capacity region?

- CF achieves optimal scaling as in the single and multi-pair case
- Capacity region?
- Two-way: Bi-directional and uni-directional

- CF achieves optimal scaling as in the single and multi-pair case
- Capacity region?
- Two-way: Bi-directional and uni-directional
- Multi-way: Similar?

- CF achieves optimal scaling as in the single and multi-pair case
- Capacity region?
- Two-way: Bi-directional and uni-directional
- Multi-way: Similar?
- No!

- CF achieves optimal scaling as in the single and multi-pair case
- Capacity region?
- Two-way: Bi-directional and uni-directional
- Multi-way: Similar?
- No!
- Let us check the LD model

Outer bound: Cut-set and genie-aided.

Outer bound: Cut-set and genie-aided.

• Let $n_1 = 5$, $n_2 = 4$, $n_3 = 3$,

Outer bound: Cut-set and genie-aided.

- Let $n_1 = 5$, $n_2 = 4$, $n_3 = 3$,
- $R_{13} = R_{21} = R_{32} = 2$, $R_{23} = 1$

Outer bound: Cut-set and genie-aided.

- Let $n_1 = 5$, $n_2 = 4$, $n_3 = 3$,
- $R_{13} = R_{21} = R_{32} = 2$, $R_{23} = 1$

• Rates inside the outer bound

Node 2

Outer bound: Cut-set and genie-aided.

- Let $n_1 = 5$, $n_2 = 4$, $n_3 = 3$,
- $R_{13} = R_{21} = R_{32} = 2$, $R_{23} = 1$

- Rates inside the outer bound
- Achievable?

Node 2

Outer bound: Cut-set and genie-aided.

- Let $n_1 = 5$, $n_2 = 4$, $n_3 = 3$,
- $R_{13} = R_{21} = R_{32} = 2$, $R_{23} = 1$

- Rates inside the outer bound
- Achievable?
- Try bi-directional and uni-directional

Node 2

• Bi-directional $2 \leftrightarrow 3$

- Bi-directional $2 \leftrightarrow 3$
- Achieves $r_{23} = r_{32} = 1$

- Bi-directional $2 \leftrightarrow 3$
- Achieves $r_{23} = r_{32} = 1$
- Remainder $R_{13} = R_{21} = 2$, $R_{32} = 1 \Rightarrow$

- Bi-directional $2 \leftrightarrow 3$
- Achieves $r_{23} = r_{32} = 1$
- Remainder $R_{13} = R_{21} = 2$, $R_{32} = 1 \Rightarrow$

 Uni-directional 1 → 3, 2 → 1, and 3 → 2 requires 5 bit-pipes

- Bi-directional $2 \leftrightarrow 3$
- Achieves $r_{23} = r_{32} = 1$
- Remainder $R_{13} = R_{21} = 2$, $R_{32} = 1 \Rightarrow$

- Uni-directional 1 → 3, 2 → 1, and 3 → 2 requires 5 bit-pipes
- Relay has only 4 remaining!

- Bi-directional $2 \leftrightarrow 3$
- Achieves $r_{23} = r_{32} = 1$
- Remainder $R_{13} = R_{21} = 2$, $R_{32} = 1 \Rightarrow$

- Uni-directional 1 → 3, 2 → 1, and 3 → 2 requires 5 bit-pipes
- Relay has only 4 remaining!
- \Rightarrow Achievability requires more CF

Node 2

Node 3

C

- Cyclic $1 \rightarrow 3 \rightarrow 2 \rightarrow 1$:
- Achieves $r_{13} = r_{32} = r_{21} = 1$
- Remainder $R_{13} = R_{21} = 1$

- Cyclic $1 \rightarrow 3 \rightarrow 2 \rightarrow 1$:
- Achieves $r_{13} = r_{32} = r_{21} = 1$
- Remainder $R_{13} = R_{21} = 1$

- Uni-directional 1 → 3 and 2 → 1: requires 2 bit-pipes
- Relay has 2 remaining

- Cyclic $1 \rightarrow 3 \rightarrow 2 \rightarrow 1$:
- Achieves $r_{13} = r_{32} = r_{21} = 1$
- Remainder $R_{13} = R_{21} = 1$

- Uni-directional 1 → 3 and 2 → 1: requires 2 bit-pipes
- Relay has 2 remaining
- Desired rate achieved!

Additional ingredient: Cyclic Communication

- Additional ingredient: Cyclic Communication
- Remark:
 - Bi-directional: 2 bits per bit-pipe Cyclic: 3/2 bits per bit-pipe Uni-directional: 1 bit per bit-pipe

- Additional ingredient: Cyclic Communication
- Remark: Bi-directional: 2 bits per bit-pipe Cyclic: 3/2 bits per bit-pipe Uni-directional: 1 bit per bit-pipe
- Best scheme: Combination of the three

- Additional ingredient: Cyclic Communication
- Remark: Bi-directional: 2 bits per bit-pipe Cyclic: 3/2 bits per bit-pipe Uni-directional: 1 bit per bit-pipe
- Best scheme: Combination of the three
- LD case: Capacity achieving [C. & S. 11]

Gaussian case:

- node *i* sends $\mathbf{x}_{ib} + \mathbf{x}_{ic} + \mathbf{x}_{iu}$ (bi-directional, cyclic, uni-directional)
- relay computes the sum of bi-directional signals, cyclic signals, and decodes the uni-directional ones
- nodes decode successively and obtain their desired signals
- Problem reduces to power allocation (near optimal allocation in [C. & S. 12])

• Sum-capacity upper bound scales as $\log(P)$,

- Sum-capacity upper bound scales as $\log(P)$,
- Simple scheduling: Schedule one pair of users at a time
- Channel reduces to a sequence of two-way relay channels

- Sum-capacity upper bound scales as log(*P*),
- Simple scheduling: Schedule one pair of users at a time
- Channel reduces to a sequence of two-way relay channels
- Apply bi-directional communication over each two-way relay channel

- Sum-capacity upper bound scales as log(*P*),
- Simple scheduling: Schedule one pair of users at a time
- Channel reduces to a sequence of two-way relay channels
- Apply bi-directional communication over each two-way relay channel
- achieves sum-capacity within a constant gap

Summary

- Key ingredient: CF for bi-directional and cyclic communication
- Best scheme: Combination of bi-directional, cyclic, and uni-directional
- Sum-capacity scales as log(P),

Summary

- Key ingredient: CF for bi-directional and cyclic communication
- Best scheme: Combination of bi-directional, cyclic, and uni-directional
- Sum-capacity scales as $\log(P)$,
- Consequence: Treating different modes of information flow differently increases the communication rate

Outline

1 Two-way channel

Two-way relay channel The linear-deterministic approximation Lattice codes

Multi-way relay channel Multi-pair Two-way Relay Channel Multi-way Relay Channel

4 Multi-way Channel

3-Way Channel

- 3 (or more) nodes communicating with each other in multiple directions
- Extension of Shannon's two-way channel
- A suitable model for D2D systems (offloading traffic from the cellular network [Asadi *et al.*])

• Full message-exchange: Message W_{ij} from node *i* to *j*,

- Full message-exchange: Message W_{ij} from node i to j,
- Tx signal: \mathbf{x}_j , power P,

- Full message-exchange: Message W_{ij} from node *i* to *j*,
- Tx signal: x_j , power P,
- Rx signal: $\mathbf{y}_k = h_i \mathbf{x}_j + h_j \mathbf{x}_i + \mathbf{z}_k$ (reciprocal channels, unit noise power)

- Full message-exchange: Message W_{ij} from node *i* to *j*,
- Tx signal: \mathbf{x}_j , power P,
- Rx signal: $\mathbf{y}_k = h_i \mathbf{x}_j + h_j \mathbf{x}_i + \mathbf{z}_k$ (reciprocal channels, unit noise power)
- w.l.o.g. $h_3^2 \ge h_2^2 \ge h_1^2$,

- Full message-exchange: Message W_{ij} from node i to j,
- Tx signal: \mathbf{x}_j , power P,
- Rx signal: $\mathbf{y}_k = h_i \mathbf{x}_j + h_j \mathbf{x}_i + \mathbf{z}_k$ (reciprocal channels, unit noise power)
- w.l.o.g. $h_3^2 \ge h_2^2 \ge h_1^2$,
- Node k decodes W_{ik} and W_{jk} ,

Sum-Capacity

- Two-way channel: Cut-set bound tight, capacity scales as log(*P*),
- 3-way channel: Cut-set bound not tight, capacity also scales as $\log(P)$

Sum-capacity

The sum-capacity of the 3-way channel is bounded by

$$\log(1 + h_3^2 P) \le C_{\Sigma} \le \log(1 + h_3^2 P) + 2.$$

- Converse: Genie-aided bound [C. et al. 14]
- Achievability: Only users 1 and 2 communicate
- Optimal scaling can also be achieved by scheduling

• Two-way channel scheme suffices for sum-capacity,

- Two-way channel scheme suffices for sum-capacity,
- but not for Capacity region,

• Assume nodes 2 & 3 want to communicate, but $h_1^2 \ll 1$

- Assume nodes 2 & 3 want to communicate, but $h_1^2 \ll 1$
- Communication still possible via node 1 as a relay (two-way relay channel)

- Two-way channel scheme suffices for sum-capacity,
 but not for Capacity region,
 - Assume nodes 2 & 3 want to communicate, but $h_1^2 \ll 1$
 - Communication still possible via node 1 as a relay (two-way relay channel)
 - Relaying is necessary for capacity region!

How to find the capacity region?

• Trick: Transform the channel into a Y-channel!

How to find the capacity region?

- Trick: Transform the channel into a Y-channel!
- Split stronger node into two,

How to find the capacity region?

- Trick: Transform the channel into a Y-channel!
- Split stronger node into two,

• Assume $h_1^2 = 0 \Rightarrow$ Y-channel!

How to find the capacity region?

- Trick: Transform the channel into a Y-channel!
- Split stronger node into two,

- Assume $h_1^2 = 0 \Rightarrow$ Y-channel!
- $\Rightarrow\,$ Capacity achieving scheme for the Y-channel is capacity achieving for the 3-way channel

How to find the capacity region?

- Trick: Transform the channel into a Y-channel!
- Split stronger node into two,

- Assume $h_1^2 = 0 \Rightarrow$ Y-channel!
- $\Rightarrow\,$ Capacity achieving scheme for the Y-channel is capacity achieving for the 3-way channel
 - What if $h_1^2 > 0$?

If $h_1^2 > 0$:

• Interference between nodes 2 and 3 (w.r.t. Y-channel scheme)

If $h_1^2 > 0$:

- Interference between nodes 2 and 3 (w.r.t. Y-channel scheme)
- How to resolve interference?

 $-\infty$

Node 3

 h_3

Node 1

Capacity Region

If $h_1^2 > 0$:

- Interference between nodes 2 and 3 (w.r.t. Y-channel scheme)
- How to resolve interference?

If interference at 3 is:

• A desired signal at 3: Backward decoding:

 $\mathbf{y}_3(B) = h_2 \mathbf{x}_1(B) + h_1 \mathbf{x}_{23}(B) + \mathbf{z}_3(B), \quad \mathbf{y}_3(B+1) = h_2 \mathbf{x}_1(B+1) + \mathbf{z}_3(B+1)$

Node A

 After decoding desired signals from x₁(B + 1), node 3 removes interference from x₂₃(B) (Causality)

Node 2

If $h_1^2 > 0$:

- Interference between nodes 2 and 3 (w.r.t. Y-channel scheme)
- How to resolve interference?

If interference at 3 is:

• A desired signal at 3: Backward decoding:

 $\mathbf{y}_3(B) = h_2 \mathbf{x}_1(B) + h_1 \mathbf{x}_{23}(B) + \mathbf{z}_3(B), \quad \mathbf{y}_3(B+1) = h_2 \mathbf{x}_1(B+1) + \mathbf{z}_3(B+1)$

- After decoding desired signals from x₁(B + 1), node 3 removes interference from x₂₃(B) (Causality)
- A desired signal at 1: Interference neutralization

$$\mathbf{y}_3 = h_2 \mathbf{x}_1 + h_1 \mathbf{x}_{21} + \mathbf{z}_3$$

• Node 2 pre-transmits a signal for interference neutralization: $\mathbf{x}_1 = \mathbf{x}_1' - \frac{h_1}{h_2}\mathbf{x}_{21}$

Main ingredients

• Y-channel scheme: Bi-directional, cyclic, and uni-directional communication

Main ingredients

- Y-channel scheme: Bi-directional, cyclic, and uni-directional communication
- For resolving interference between nodes 2 and 3: Backward decoding and interference neutralization

Main ingredients

- Y-channel scheme: Bi-directional, cyclic, and uni-directional communication
- For resolving interference between nodes 2 and 3: Backward decoding and interference neutralization

• Outer bound: Genie-aided and cut-set

Main ingredients

- Y-channel scheme: Bi-directional, cyclic, and uni-directional communication
- For resolving interference between nodes 2 and 3: Backward decoding and interference neutralization

- Outer bound: Genie-aided and cut-set
- Capacity region of the LD case, and approximate capacity of the Gaussian case [C *et al.* 14],

Application

Part 3: MIMO

Outline

- **1** From Capacity to DoF
- 2 MIMO Two-Way Relay Channel Channel diagonalization Signal Alignment
- 3 MIMO multi-way relay channel Sum-DoF **DoF** Region

4 MIMO Multi-way Channel

Single-user (MIMO P2P):

Input covariance \mathbf{Q} , $tr(\mathbf{Q}) \leq P$

RUB Institute of Digital Communication Systems

From Capacity to Capacity Region

Multi-user (MIMO MAC):

Input covariance \mathbf{Q}_i , i = 1, 2, tr $(\mathbf{Q}_i) \leq P$

Multi-user (MIMO MAC):

 $\frac{\text{Capacity region:}}{R_i \le \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|,}$

Input covariance \mathbf{Q}_i , i = 1, 2, $tr(\mathbf{Q}_i) \leq P$

Multi-user (MIMO MAC):

Input covariance \mathbf{Q}_i , i = 1, 2, $tr(\mathbf{Q}_i) \leq P$

Multi-user (MIMO MAC):

$$\begin{split} & \frac{\text{Capacity region:}}{R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|}, \\ & R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H| \end{split}$$

Input covariance \mathbf{Q}_i , i = 1, 2, $\mathsf{tr}(\mathbf{Q}_i) \leq P$

Single-user (MIMO P2P):

Single-user (MIMO P2P):

Capacity:

$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Single-user (MIMO P2P):

Capacity:

 $C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$

Optimization: water-filling

Single-user (MIMO P2P):

Capacity:

$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Optimization: water-filling

DoF:

• M Tx antennas, N Rx antennas

Single-user (MIMO P2P):

Capacity:

$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Optimization: water-filling

- $M \operatorname{Tx}$ antennas, $N \operatorname{Rx}$ antennas
- $\Rightarrow \mathbf{H} \in \mathbb{C}^{N \times M} \Rightarrow \mathsf{rank}(\mathbf{H}) = \min\{M, N\}$

Capacity:

$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Optimization: water-filling

DoF:

• $M \operatorname{Tx}$ antennas, $N \operatorname{Rx}$ antennas

 $\Rightarrow \mathbf{H} \in \mathbb{C}^{N \times M} \Rightarrow \mathsf{rank}(\mathbf{H}) = \min\{M, N\}$

 $\Rightarrow C \approx \min\{M, N\}C(P)$ at high P

C(P): SISO P2P capacity

Capacity:

$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Optimization: water-filling

DoF:

- M Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H} \in \mathbb{C}^{N \times M} \Rightarrow \mathsf{rank}(\mathbf{H}) = \min\{M, N\}$
- $\Rightarrow \ C \approx \min\{M,N\}C(P) \quad \text{ at high } P$

C(P): SISO P2P capacity

• <u>DoF</u>: $d = \lim_{P \to \infty} \frac{C_{\text{apacity}}}{C(P)} = \operatorname{rank}(\mathbf{H}) \implies d = \min\{M, N\}$

Capacity:

$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Optimization: water-filling

- M Tx antennas, N Rx antennas
- \Rightarrow **H** $\in \mathbb{C}^{N \times M} \Rightarrow \operatorname{rank}(\mathbf{H}) = \min\{M, N\}$
- $\Rightarrow C \approx \min\{M, N\}C(P)$ at high P C(P): SISO P2P capacity
- <u>DoF</u>: $d = \lim_{P \to \infty} \frac{\text{Capacity}}{C(P)} = \text{rank}(\mathbf{H}) \Rightarrow d = \min\{M, N\}$
- \Rightarrow Capacity equivalent to that of d parallel SISO P2P channels!

Multi-user (MIMO MAC):

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

DoF:

• M_i Tx antennas, N Rx antennas

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

- M_i Tx antennas, N Rx antennas
- \Rightarrow $\mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

- M_i Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$
 - $C_{\Sigma} \approx \min\{M_1 + M_2, N\}C(P)$ at high P

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

- M_i Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$
- $C_{\Sigma} \approx \min\{M_1 + M_2, N\}C(P)$ at high P
- <u>DoF</u>: $d_i = \lim_{P \to \infty} \frac{R_i}{C(P)}$

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

- M_i Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$
 - $C_{\Sigma} \approx \min\{M_1 + M_2, N\}C(P)$ at high P
- <u>DoF</u>: $d_i = \lim_{P \to \infty} \frac{R_i}{C(P)}$
- \Rightarrow DoF region: $d_i \leq \mathsf{rank}(\mathbf{H}_i)$, $d_1 + d_2 \leq \mathsf{rank}([\mathbf{H}_1, \mathbf{H}_2])$

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

DoF:

- *M_i* Tx antennas, *N* Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$
 - $C_{\Sigma} \approx \min\{M_1 + M_2, N\}C(P)$ at high P
- <u>DoF</u>: $d_i = \lim_{P \to \infty} \frac{R_i}{C(P)}$
- \Rightarrow DoF region: $d_i \leq \mathsf{rank}(\mathbf{H}_i)$, $d_1 + d_2 \leq \mathsf{rank}([\mathbf{H}_1, \mathbf{H}_2])$

 $\Rightarrow d_{\Sigma} = \min\{M_1 + M_2, N\}$

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

- M_i Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$
 - $C_{\Sigma} \approx \min\{M_1 + M_2, N\}C(P)$ at high P
- <u>DoF</u>: $d_i = \lim_{P \to \infty} \frac{R_i}{C(P)}$
- \Rightarrow DoF region: $d_i \leq \mathsf{rank}(\mathbf{H}_i)$, $d_1 + d_2 \leq \mathsf{rank}([\mathbf{H}_1, \mathbf{H}_2])$
- $\Rightarrow d_{\Sigma} = \min\{M_1 + M_2, N\}$
- \Rightarrow Sum-capacity equivalent to that of d_{Σ} parallel SISO P2P channels!

DoF

 $\mathsf{DoF}\ d$ can be interpreted as the number of parallel streams that can be sent simultaneously over a channel.

It leads to a capacity approximation as

 $C_{\Sigma} = dC(P) + o(C(P)),$

(C(P): capacity of a P2P channel)

Outline

From Capacity to DoF

- 2 MIMO Two-Way Relay Channel Channel diagonalization Signal Alignment
- 3 MIMO multi-way relay channel

4 MIMO Multi-way Channel
MIMO Two-Way Relay Channel

DoF characterization [Gündüz et al. 08]

MIMO Two-Way Relay Channel

Cut-set bound:

- Node *i* can not send more than *M_i* streams,
- Node *i* can not receive more than *M_i* streams,
- Relay can relay at most 2N streams (PLNC gain),
- \Rightarrow Total streams $2\min\{M_1, M_2, N\}$ DoF
- achievable by Compress-forward e.g. [Gündüz et al. 08]

MIMO Two-Way Relay Channel

Cut-set bound:

- Node *i* can not send more than *M_i* streams,
- Node i can not receive more than M_i streams,
- Relay can relay at most 2N streams (PLNC gain),
- \Rightarrow Total streams $2\min\{M_1, M_2, N\}$ DoF
- achievable by Compress-forward e.g. [Gündüz et al. 08]
- Next: Simple achievability scheme

Simple Achievability

Main Ingredients:

- Channel diagonalization
- Signal alignment

Outline

1 From Capacity to DoF

2 MIMO Two-Way Relay Channel Channel diagonalization

3 MIMO multi-way relay channel

4 MIMO Multi-way Channel

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix \mathbf{H} to a diagonal matrix.

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

 $M \ge N$: ZF pre-coding:

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

 $M \ge N$: ZF pre-coding:

- Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
- $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

- Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
- $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

- $M \ge N$: ZF pre-coding:
 - Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
 - $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

- $M \ge N$: ZF pre-coding:
 - Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
 - $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:
 - Pseudo-inverse: $\mathbf{H}^{\ddagger} = [\mathbf{H}^{H}\mathbf{H}]^{-1}\mathbf{H}^{H}$

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

- $M \ge N$: ZF pre-coding:
 - Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
 - $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:
 - Pseudo-inverse: $\mathbf{H}^{\ddagger} = [\mathbf{H}^{H}\mathbf{H}]^{-1}\mathbf{H}^{H}$
 - $\mathbf{H}\mathbf{H}^{\ddagger} = \mathbf{I}$

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

- $M \ge N$: ZF pre-coding:
 - Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
 - $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:
 - Pseudo-inverse: $\mathbf{H}^{\ddagger} = [\mathbf{H}^{H}\mathbf{H}]^{-1}\mathbf{H}^{H}$
 - $\mathbf{H}\mathbf{H}^{\ddagger} = \mathbf{I}$

M parallel SISO P2P channels!

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

- Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
- $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:
 - Pseudo-inverse: $\mathbf{H}^{\ddagger} = [\mathbf{H}^{H}\mathbf{H}]^{-1}\mathbf{H}^{H}$
 - $\mathbf{H}\mathbf{H}^{\ddagger} = \mathbf{I}$

M parallel SISO P2P channels!

DoF achievable by treating each sub-channel separately \Rightarrow Separability!

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix \mathbf{H} to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

- Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
- $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:
 - Pseudo-inverse: $\mathbf{H}^{\ddagger} = [\mathbf{H}^{H}\mathbf{H}]^{-1}\mathbf{H}^{H}$
 - $\mathbf{H}\mathbf{H}^{\ddagger} = \mathbf{I}$

M parallel SISO P2P channels!

DoF achievable by treating each sub-channel separately \Rightarrow Separability! MAC and BC are also separable

Outline

- **1** From Capacity to DoF
- 2 MIMO Two-Way Relay Channel Signal Alignment

3 MIMO multi-way relay channel

4 MIMO Multi-way Channel

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

Two signals can be aligned by pre-coding: $\mathbf{x}_1 = \mathbf{V}_1 u_1$ $\mathbf{x}_2 = \mathbf{V}_2 u_2$

• V₁, V₂ arbitrary

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

Two signals can be aligned by pre-coding: $\mathbf{x}_1 = \mathbf{V}_1 u_1$ $\mathbf{x}_2 = \mathbf{V}_2 u_2$

• V₁, V₂ arbitrary

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

- V₁, V₂ arbitrary
- $\mathbf{H}_1\mathbf{V}_1 = \mathbf{H}_2\mathbf{V}_2$

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

- V₁, V₂ arbitrary
- $\mathbf{H}_1\mathbf{V}_1 = \mathbf{H}_2\mathbf{V}_2$

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

- V₁, V₂ arbitrary
- $\mathbf{H}_1\mathbf{V}_1 = \mathbf{H}_2\mathbf{V}_2$
- Useful for CF!

Definition (Compute-forward (CF))

Computing and forwarding a linear combination of two signals e.g. $\mathbf{x}_1 + \mathbf{x}_2$.

Definition (Compute-forward (CF))

Computing and forwarding a linear combination of two signals e.g. $\mathbf{x}_1 + \mathbf{x}_2$.

Recall: CF can be accomplished by using lattice codes.

Definition (Compute-forward (CF))

Computing and forwarding a linear combination of two signals e.g. $\mathbf{x}_1 + \mathbf{x}_2$.

Recall: CF can be accomplished by using lattice codes.

Example:

• $\mathbf{x}_1 = \mathbf{V}_1 u_1,$ $\mathbf{x}_2 = \mathbf{V}_2 u_2,$ $\mathbf{H}_1 \mathbf{V}_1 = \mathbf{H}_2 \mathbf{V}_2 = [1, 1]^T$

Definition (Compute-forward (CF))

Computing and forwarding a linear combination of two signals e.g. $\mathbf{x}_1 + \mathbf{x}_2$.

Recall: CF can be accomplished by using lattice codes.

Example:

- $\mathbf{x}_1 = \mathbf{V}_1 u_1,$ $\mathbf{x}_2 = \mathbf{V}_2 u_2,$ $\mathbf{H}_1 \mathbf{V}_1 = \mathbf{H}_2 \mathbf{V}_2 = [1, 1]^T$
- $\mathbf{y}_3 = (u_1 + u_2)[1, 1]^T + \mathbf{n}$

Definition (Compute-forward (CF))

Computing and forwarding a linear combination of two signals e.g. $\mathbf{x}_1 + \mathbf{x}_2$.

Recall: CF can be accomplished by using lattice codes.

Example:

- $\mathbf{x}_1 = \mathbf{V}_1 u_1,$ $\mathbf{x}_2 = \mathbf{V}_2 u_2,$ $\mathbf{H}_1 \mathbf{V}_1 = \mathbf{H}_2 \mathbf{V}_2 = [1, 1]^T$
- $\mathbf{y}_3 = (u_1 + u_2)[1, 1]^T + \mathbf{n}$
- compute $u_1 + u_2$ from [1, 1] $\mathbf{y}_3 = 2(u_1 + u_2) + n'$

• Cut-set bound: $d \le 2 \min\{M_1, M_2, N\}$.

- Cut-set bound: $d \le 2 \min\{M_1, M_2, N\}$.
- Use only $m = \frac{d}{2} = \min\{M_1, M_2, N\}$ antennas at each transceiver:
- $\Rightarrow \mathbf{y}_r = \mathbf{H}_1 \mathbf{x}_1 + \mathbf{H}_2 \mathbf{x}_2 + \mathbf{z}_r, \quad \mathbf{y}_i = \mathbf{D}_i \mathbf{x}_r + \mathbf{z}_i, \quad \mathbf{H}_i, \mathbf{D}_i: \ m \times m.$

- Cut-set bound: $d \le 2 \min\{M_1, M_2, N\}$.
- Use only $m = \frac{d}{2} = \min\{M_1, M_2, N\}$ antennas at each transceiver:
- $\Rightarrow \mathbf{y}_r = \mathbf{H}_1 \mathbf{x}_1 + \mathbf{H}_2 \mathbf{x}_2 + \mathbf{z}_r, \quad \mathbf{y}_i = \mathbf{D}_i \mathbf{x}_r + \mathbf{z}_i, \quad \mathbf{H}_i, \mathbf{D}_i: \ m \times m.$
- Channel diagonalization: $\mathbf{x}_i = \mathbf{H}_i^{-1}\mathbf{u}_i$, $\mathbf{y}'_i = \mathbf{D}_i^{-1}\mathbf{y}_i$:
- $\Rightarrow \mathbf{y}_r = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{z}_r, \quad \mathbf{y}_i' = \mathbf{x}_r + \mathbf{z}_i',$

- Cut-set bound: $d \le 2 \min\{M_1, M_2, N\}$.
- Use only $m = \frac{d}{2} = \min\{M_1, M_2, N\}$ antennas at each transceiver:
- $\Rightarrow \mathbf{y}_r = \mathbf{H}_1 \mathbf{x}_1 + \mathbf{H}_2 \mathbf{x}_2 + \mathbf{z}_r, \quad \mathbf{y}_i = \mathbf{D}_i \mathbf{x}_r + \mathbf{z}_i, \quad \mathbf{H}_i, \mathbf{D}_i: \ m \times m.$
- Channel diagonalization: $\mathbf{x}_i = \mathbf{H}_i^{-1}\mathbf{u}_i, \ \mathbf{y}'_i = \mathbf{D}_i^{-1}\mathbf{y}_i$:
- $\Rightarrow \mathbf{y}_r = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{z}_r, \quad \mathbf{y}_i' = \mathbf{x}_r + \mathbf{z}_i',$
- \Rightarrow *m* parallel SISO two-way relay channels

- Cut-set bound: $d \le 2 \min\{M_1, M_2, N\}$.
- Use only $m = \frac{d}{2} = \min\{M_1, M_2, N\}$ antennas at each transceiver:
- $\Rightarrow \mathbf{y}_r = \mathbf{H}_1 \mathbf{x}_1 + \mathbf{H}_2 \mathbf{x}_2 + \mathbf{z}_r, \quad \mathbf{y}_i = \mathbf{D}_i \mathbf{x}_r + \mathbf{z}_i, \quad \mathbf{H}_i, \mathbf{D}_i: \ m \times m.$
- Channel diagonalization: $\mathbf{x}_i = \mathbf{H}_i^{-1}\mathbf{u}_i$, $\mathbf{y}'_i = \mathbf{D}_i^{-1}\mathbf{y}_i$:
- $\Rightarrow \mathbf{y}_r = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{z}_r, \quad \mathbf{y}_i' = \mathbf{x}_r + \mathbf{z}_i',$
- \Rightarrow *m* parallel SISO two-way relay channels
 - Apply CF: achieve $2\left[\frac{1}{2}\log\left(\frac{1}{2}+P\right)\right]^+ \approx 2C(P)$ (at high P) per sub-channel

- Cut-set bound: $d \le 2 \min\{M_1, M_2, N\}$.
- Use only $m = \frac{d}{2} = \min\{M_1, M_2, N\}$ antennas at each transceiver:
- $\Rightarrow \mathbf{y}_r = \mathbf{H}_1 \mathbf{x}_1 + \mathbf{H}_2 \mathbf{x}_2 + \mathbf{z}_r, \quad \mathbf{y}_i = \mathbf{D}_i \mathbf{x}_r + \mathbf{z}_i, \quad \mathbf{H}_i, \mathbf{D}_i: \ m \times m.$
- Channel diagonalization: $\mathbf{x}_i = \mathbf{H}_i^{-1}\mathbf{u}_i$, $\mathbf{y}'_i = \mathbf{D}_i^{-1}\mathbf{y}_i$:
- $\Rightarrow \mathbf{y}_r = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{z}_r, \quad \mathbf{y}_i' = \mathbf{x}_r + \mathbf{z}_i',$
- \Rightarrow *m* parallel SISO two-way relay channels
 - Apply CF: achieve $2\left[\frac{1}{2}\log\left(\frac{1}{2}+P\right)\right]^+ \approx 2C(P)$ (at high P) per sub-channel
 - Total rate $2mC(P) \Rightarrow 2m$ (= d) DoF

Remarks

• Diagonalization ensures the alignment of each pair of signals in a 1-D space
- Diagonalization ensures the alignment of each pair of signals in a 1-D space
- Optimal DoF achievable by using either compress-forward, compute-forward, or amplify-forward over each sub-channel (dimension)

Possible improvement

DoF achieving scheme:

- Reduce the number of antennas to $\min\{M_1, M_2, N\}$,
- apply MIMO pre-coding and post-coding for channel diagonalization,
- \Rightarrow decompose channel into sub-channels,
 - apply CF over each sub-channel

Possible improvement

DoF achieving scheme:

- Reduce the number of antennas to min{ M_1, M_2, N },
- apply MIMO pre-coding and post-coding for channel diagonalization,
- \Rightarrow decompose channel into sub-channels,
 - apply CF over each sub-channel

Use excess antennas for sending a (uni-directional) DF signal Dirty-paper coded against the remaining signals at the same node.

Outline

From Capacity to DoF

2 MIMO Two-Way Relay Channel

3 MIMO multi-way relay channel Sum-DoF **DoF** Region

Outline

2 MIMO Two-Way Relay Channel

3 MIMO multi-way relay channel Sum-DoF

4 MIMO Multi-way Channel

- If $M_1 = M_2 = M_3 = M$ and $N \ge \lceil 3M/2 \rceil$, then:
- cut-set bound is achievable [Lee *et al.* 10],
- Achievability: Signal-space alignment for NC
- \Rightarrow i.e., d = 3M,

- If $M_1 = M_2 = M_3 = M$ and $N \ge \lceil 3M/2 \rceil$, then:
- cut-set bound is achievable [Lee *et al.* 10],
- Achievability: Signal-space alignment for NC
- \Rightarrow i.e., d = 3M,
 - Question: What if $N \leq \lceil 3M/2 \rceil$?

- If $M_1 = M_2 = M_3 = M$ and $N \ge \lceil 3M/2 \rceil$, then:
- cut-set bound is achievable [Lee *et al.* 10],
- Achievability: Signal-space alignment for NC
- \Rightarrow i.e., d = 3M,
 - Question: What if $N \leq \lceil 3M/2 \rceil$?

sum-DoF

The sum-DoF of the MIMO Y-channel with $M_1 \ge M_2 \ge M_3$ (wlog) is given by

$$d = \min\{\underbrace{M_1 + M_2 + M_3}, \underbrace{2M_2 + 2M_3, 2N}_{2M_2}\}$$

Cut-set bound

New bounds

Signal-space alignment for network-coding

• The signals H_1x_1 , H_2x_2 , and H_3x_3 fill the entire space at the relay

Signal-space alignment for network-coding

- The signals H_1x_1 , H_2x_2 , and H_3x_3 fill the entire space at the relay
- Relay zero-forces $H_{2}x_{2}$ using N_{13} and $H_{3}x_{3}$ using N_{12}

Signal-space alignment for network-coding

- The signals H_1x_1 , H_2x_2 , and H_3x_3 fill the entire space at the relay
- Relay zero-forces $H_{2}x_{2}$ using N_{13} and $H_{3}x_{3}$ using N_{12}
- Result: $N_{12}H_1x_1 + N_{12}H_2x_2$ (2D) and $N_{13}H_1x_1 + N_{13}H_3x_3$ (1D)

- The signals H_1x_1 , H_2x_2 , and H_3x_3 fill the entire space at the relay
- Relay zero-forces $H_{2}x_{2}$ using N_{13} and $H_{3}x_{3}$ using N_{12}
- Result: $N_{12}H_1x_1 + N_{12}H_2x_2$ (2D) and $N_{13}H_1x_1 + N_{13}H_3x_3$ (1D)
- Tx's diagonalize their effective channels

Signal-space alignment for network-coding

- The signals H_1x_1 , H_2x_2 , and H_3x_3 fill the entire space at the relay
- Relay zero-forces $H_{2}x_{2}$ using N_{13} and $H_{3}x_{3}$ using N_{12}
- Result: $N_{12}H_1x_1 + N_{12}H_2x_2$ (2D) and $N_{13}H_1x_1 + N_{13}H_3x_3$ (1D)
- Tx's diagonalize their effective channels \Rightarrow desired channel structure
- Relay obtains net-coded signals: $u_{12} + u_{21}$, $u'_{12} + u'_{21}$, and $u_{13} + u_{31}$

• Relay uses a similar beam-forming strategy to deliver the net-coded signals to their desired destinations

- Relay uses a similar beam-forming strategy to deliver the net-coded signals to their desired destinations
- User 1 gets $u_{12} + u_{21}$, $u'_{12} + u'_{21}$, and $u_{13} + u_{31}$, and extracts u_{21} , u'_{21} , and u_{31}
- User 2 gets $u_{12} + u_{21}$ and $u'_{12} + u'_{21}$ and extracts u_{12} and u'_{12}
- User 3 gets $u_{13} + u_{31}$ and extracts u_{13}

- Relay uses a similar beam-forming strategy to deliver the net-coded signals to their desired destinations
- User 1 gets $u_{12} + u_{21}$, $u'_{12} + u'_{21}$, and $u_{13} + u_{31}$, and extracts u_{21} , u'_{21} , and u_{31}
- User 2 gets $u_{12} + u_{21}$ and $u'_{12} + u'_{21}$ and extracts u_{12} and u'_{12}
- User 3 gets $u_{13} + u_{31}$ and extracts u_{13}
- 6 symbols delivered successfully \Rightarrow 6 DoF (optimal)

Case 1: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = 2M_2 + 2M_3$

• Use only $M_2 + M_3$ antennas at the relay

Case 1: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = 2M_2 + 2M_3$

- Use only $M_2 + M_3$ antennas at the relay
- Users send \mathbf{u}_{12} and \mathbf{u}_{21} (M_2 -dim), and \mathbf{u}_{13} and \mathbf{u}_{31} (M_3 -dim)

Case 1: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = 2M_2 + 2M_3$

- Use only M₂ + M₃ antennas at the relay
- Users send \mathbf{u}_{12} and \mathbf{u}_{21} (M_2 -dim), and \mathbf{u}_{13} and \mathbf{u}_{31} (M_3 -dim)
- Align \mathbf{u}_{12} and \mathbf{u}_{21} , and align \mathbf{u}_{13} and \mathbf{u}_{31} @ relay

Case 1: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = 2M_2 + 2M_3$

- Use only M₂ + M₃ antennas at the relay
- Users send \mathbf{u}_{12} and \mathbf{u}_{21} (M_2 -dim), and \mathbf{u}_{13} and \mathbf{u}_{31} (M_3 -dim)
- Align \mathbf{u}_{12} and $\mathbf{u}_{21}\text{,}$ and align \mathbf{u}_{13} and \mathbf{u}_{31} @ relay
- Relay decodes $L(\mathbf{u}_{12}, \mathbf{u}_{21})$ and $L(\mathbf{u}_{13}, \mathbf{u}_{31})$

Case 1: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = 2M_2 + 2M_3$

- Use only $M_2 + M_3$ antennas at the relay
- Users send \mathbf{u}_{12} and \mathbf{u}_{21} (M_2 -dim), and \mathbf{u}_{13} and \mathbf{u}_{31} (M_3 -dim)
- Align \mathbf{u}_{12} and \mathbf{u}_{21} , and align \mathbf{u}_{13} and \mathbf{u}_{31} @ relay
- Relay decodes $L(\mathbf{u}_{12}, \mathbf{u}_{21})$ and $L(\mathbf{u}_{13}, \mathbf{u}_{31})$
- Beam-form $L(\mathbf{u}_{12},\mathbf{u}_{21})$ and $L(\mathbf{u}_{13},\mathbf{u}_{31})$ orthogonal to users 3 and 2, respectively

Case 1: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = 2M_2 + 2M_3$

- Use only $M_2 + M_3$ antennas at the relay
- Users send \mathbf{u}_{12} and \mathbf{u}_{21} (M_2 -dim), and \mathbf{u}_{13} and \mathbf{u}_{31} (M_3 -dim)
- Align \mathbf{u}_{12} and \mathbf{u}_{21} , and align \mathbf{u}_{13} and \mathbf{u}_{31} @ relay
- Relay decodes $L(\mathbf{u}_{12}, \mathbf{u}_{21})$ and $L(\mathbf{u}_{13}, \mathbf{u}_{31})$
- Beam-form $L(\mathbf{u}_{12}, \mathbf{u}_{21})$ and $L(\mathbf{u}_{13}, \mathbf{u}_{31})$ orthogonal to users 3 and 2, respectively
- Each user decodes the desired linear combinations, and extracts the desired signals $\Rightarrow 2M_2 + 2M_3$ DoF

Case 2: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = M_1 + M_2 + M_3$

• Similar to [Lee et al. 10] but with an asymmetric DoF allocation

Case 2: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = M_1 + M_2 + M_3$

- Similar to [Lee et al. 10] but with an asymmetric DoF allocation
- Use only $\frac{M_1+M_2+M_3}{2}$ antennas at the relay

Case 2: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = M_1 + M_2 + M_3$

- Similar to [Lee et al. 10] but with an asymmetric DoF allocation
- Use only $\frac{M_1+M_2+M_3}{2}$ antennas at the relay
- Align \mathbf{u}_{12} and \mathbf{u}_{21} in a d_{12} -dim subspace $(d_{12} = \dim(\operatorname{span}(\mathbf{H}_1) \cap \operatorname{span}(\mathbf{H}_2)) = \frac{M_1 + M_2 - M_3}{2})$

Case 2: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = M_1 + M_2 + M_3$

- Similar to [Lee et al. 10] but with an asymmetric DoF allocation
- Use only $\frac{M_1+M_2+M_3}{2}$ antennas at the relay
- Align \mathbf{u}_{12} and \mathbf{u}_{21} in a d_{12} -dim subspace $(d_{12} = \dim(\operatorname{span}(\mathbf{H}_1) \cap \operatorname{span}(\mathbf{H}_2)) = \frac{M_1 + M_2 - M_3}{2})$
- similarly, align \mathbf{u}_{13} and \mathbf{u}_{31} in $d_{13} = \frac{M_1 + M_3 M_2}{2}$ dimensions, and align \mathbf{u}_{23} and \mathbf{u}_{32} in $d_{23} = \frac{M_2 + M_3 M_1}{2}$ dimensions

Case 2: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = M_1 + M_2 + M_3$

- Similar to [Lee et al. 10] but with an asymmetric DoF allocation
- Use only $\frac{M_1+M_2+M_3}{2}$ antennas at the relay
- Align \mathbf{u}_{12} and \mathbf{u}_{21} in a d_{12} -dim subspace $(d_{12} = \dim(\operatorname{span}(\mathbf{H}_1) \cap \operatorname{span}(\mathbf{H}_2)) = \frac{M_1 + M_2 - M_3}{2})$
- similarly, align \mathbf{u}_{13} and \mathbf{u}_{31} in $d_{13} = \frac{M_1 + M_3 M_2}{2}$ dimensions, and align \mathbf{u}_{23} and \mathbf{u}_{32} in $d_{23} = \frac{M_2 + M_3 M_1}{2}$ dimensions
- Achieve $d = 2d_{12} + 2d_{13} + 2d_{23} = M_1 + M_2 + M_3$ DoF

Case 3: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = 2N$

• Reduce the number of antennas at the users so that $N = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3\}$

Case 3: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = 2N$

- Reduce the number of antennas at the users so that $N = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3\}$
- Use same scheme as case 1 or case 2

Case 3: $d = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3, 2N\} = 2N$

- Reduce the number of antennas at the users so that $N = \min\{2M_2 + 2M_3, M_1 + M_2 + M_3\}$
- Use same scheme as case 1 or case 2

Remark: If $M_3 = 0 \Rightarrow$ sum-DoF of the two-way relay channel

Outline

2 MIMO Two-Way Relay Channel

3 MIMO multi-way relay channel **DoF** Region

4 MIMO Multi-way Channel

Importance of DoF region

Definition

 R_{ij} : Rate of signal from *i* to *j*
- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P \to \infty} \frac{R_{ij}}{C(P)}$

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{C(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$

 $+~d_{\Sigma}$ is an overall measure of performance for a network

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{C(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$
- \mathcal{D} : Set of simultaneously achievable DoF's d_{ij}

- $+ \ d_{\Sigma}$ is an overall measure of performance for a network
- $-~d_{\Sigma}$ doesn't provide insights on the trade-off between individual DoF's

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{C(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$
- \mathcal{D} : Set of simultaneously achievable DoF's d_{ij}

- $+ \ d_{\Sigma}$ is an overall measure of performance for a network
- $-~d_{\Sigma}$ doesn't provide insights on the trade-off between individual DoF's

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{C(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$
- \mathcal{D} : Set of simultaneously achievable DoF's d_{ij}

- $+ \ d_{\Sigma}$ is an overall measure of performance for a network
- $-~d_{\Sigma}$ doesn't provide insights on the trade-off between individual DoF's

Definition

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{C(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$
- \mathcal{D} : Set of simultaneously achievable DoF's d_{ij}

- $+ \ d_{\Sigma}$ is an overall measure of performance for a network
- $-~d_{\Sigma}$ doesn't provide insights on the trade-off between individual DoF's

Goal

Find the DoF region of the MIMO Y-channel.

• Bi-directional communication suffices for sum-DoF,

- Bi-directional communication suffices for sum-DoF,
- True for DoF-region?

- Bi-directional communication suffices for sum-DoF,
- True for DoF-region?
- No!

Optimal scheme is a combination of bi-directional, cyclic, and uni-directional schemes.

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
2	0	1	1	1	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
2	0	1	1	1	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

Lets try uni-directional

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
2	0	1	1	1	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

Lets try uni-directional

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
2	0	1	1	1	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
2	0	1	1	1	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
21	0	1	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
21	0	1	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
21	0	1	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
21	0	1	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
21	0	1	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
21	0	1 0	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
2 1	0	⊅ 0	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
2 1	0	⊅ 0	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
2 1	0	⊅ 0	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
2 1	0	⊅ 0	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
210	0	1 0	1 0	1 0	0

Goal: Achieve the DoF tuple: over a Y-channel with M = N = 3

d_{12}	d_{13}	d_{21}	d_{23}	d_{31}	d_{32}
Ź 1 0	0	1 0	1 0	1 0	0

 $Lets \ try \ uni-directional+ \ bi-directional+ \ Cyclic \leftarrow \ optimal \ combination$

The DoF region of a 3-user MIMO Y-channel with $N \leq M$ is described by

 $d_{12} + d_{13} + d_{23} \le N$

The DoF region of a 3-user MIMO Y-channel with $N \leq M$ is described by

 $d_{12} + d_{13} + d_{23} \le N$ $d_{12} + d_{13} + d_{32} \le N$

The DoF region of a 3-user MIMO Y-channel with $N \leq M$ is described by

 $d_{12} + d_{13} + d_{23} \le N$ $d_{12} + d_{13} + d_{32} \le N$ $\vdots \qquad \vdots \qquad \vdots \qquad < \vdots$

The DoF region of a 3-user MIMO Y-channel with $N \leq M$ is described by

 $d_{12} + d_{13} + d_{23} \le N$ $d_{12} + d_{13} + d_{32} \le N$ $\vdots \quad \vdots \quad \vdots \quad \le \vdots$

DoF region [C. & S. 2014]

DoF region for $N \leq M$ described by

 $d_{p_1p_2} + d_{p_1p_3} + d_{p_2p_3} \le N, \quad \forall \mathbf{p}$

where \mathbf{p} is a permutation of (1, 2, 3) and p_i is its *i*-th component.

Achievability of $\ensuremath{\mathfrak{D}}$ is proved using:

Achievability of $\ensuremath{\mathfrak{D}}$ is proved using:

Channel diagonalization:

MIMO Y-channel

Achievability of \mathcal{D} is proved using:

Achievability of \mathcal{D} is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} \\ \mbox{Y-channel} \end{array} \rightarrow \begin{array}{c} N \ \mbox{SISO} \\ \mbox{Y-channels} \\ (\mbox{sub-channels}) \end{array}$

Information exchange:
Achievability of \mathcal{D} is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} & N \ \mbox{SISO} \\ \mbox{Y-channel} & \rightarrow \ \mbox{Y-channels} \\ \mbox{(sub-channels)} \end{array}$

Information exchange:

• Bi-directional: signal-alignment/compute-forward

Achievability of \mathcal{D} is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} & N \ \mbox{SISO} \\ \mbox{Y-channel} & \rightarrow \ \mbox{Y-channels} \\ \mbox{(sub-channels)} \end{array}$

Information exchange:

- Bi-directional: signal-alignment/compute-forward
- Cyclic: signal-alignment/compute-forward

Achievability of \mathcal{D} is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} & N \ \mbox{SISO} \\ \mbox{Y-channel} & \rightarrow \ \mbox{Y-channels} \\ \mbox{(sub-channels)} \end{array}$

Information exchange:

- Bi-directional: signal-alignment/compute-forward
- Cyclic: signal-alignment/compute-forward
- Uni-directional: decode-forward

Achievability of \mathcal{D} is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} \\ \mbox{Y-channel} \end{array} \rightarrow \begin{array}{c} N \ \mbox{SISO} \\ \mbox{Y-channels} \\ \mbox{(sub-channels)} \end{array}$

Information exchange:

- Bi-directional: signal-alignment/compute-forward
- Cyclic: signal-alignment/compute-forward
- Uni-directional: decode-forward

Resource allocation: distribute sub-channels over users

- a MIMO Y-channel with M = N = 3
- actually looks like this!

Downlink

- a MIMO Y-channel with M = N = 3
- actually looks like this!
- Pre- and post-code using the Moore-Penrose pseudo inverse

- a MIMO Y-channel with M = N = 3
- actually looks like this!
- Pre- and post-code using the Moore-Penrose pseudo inverse
- Channel Diagonalization $\Rightarrow N$ sub-channels

Information transfer

•

Information transfer

- signal-alignment
- compute-forward
- exchanges 3 symbols
- requires 2 sub-channels (up- and down-link)
- efficiency 3/2 DoF/dimension

Information transfer

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

• bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

Bi-directional + cyclic + uni-directional:

• bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Jni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1, 0, 0, 1, 1, 0)
- cyclic achieves $d_{12}^c = d_{23}^c = d_{31}^c = 1$ over 2 sub-channels

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1, 0, 0, 1, 1, 0)
- cyclic achieves $d_{12}^c = d_{23}^c = d_{31}^c = 1$ over 2 sub-channels
- residual DoF (0, 0, 0, 0, 0, 0)

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1, 0, 0, 1, 1, 0)
- cyclic achieves $d_{12}^c = d_{23}^c = d_{31}^c = 1$ over 2 sub-channels
- residual DoF (0,0,0,0,0,0)
- total number of sub-channels 3 = N!

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32})$

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: resolves 2-cycles

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

 $\begin{array}{c} d_{13} \\ d_{12} \\ d_{23} \\ d_{21} \\ d_{31} \\ d_{32} \end{array}$

Bi-directional: resolves 2-cycles

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: resolves 2-cycles

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

 d_{12} d_{23} d_{23} d_{23} d_{23} d_{21} d_{31} d_{32}

Bi-directional: resolves 2-cycles

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic: resolves 3-cycles

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: resolves 2-cycles

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic: resolves 3-cycles Residual DoF tuple (e.g.) $\mathbf{d}' = (d''_{12}, 0, 0, d''_{23}, 0, 0) \Rightarrow$ no cycles!

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: resolves 2-cycles

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic: resolves 3-cycles Residual DoF tuple (e.g.) $\mathbf{d}' = (d''_{12}, 0, 0, d''_{23}, 0, 0) \Rightarrow$ no cycles!

Uni-directional:
In General

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: resolves 2-cycles

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic: resolves 3-cycles Residual DoF tuple (e.g.) $\mathbf{d}' = (d''_{12}, 0, 0, d''_{23}, 0, 0) \Rightarrow$ no cycles!

Uni-directional: d achieved!

For the K-user Y-channel with $N \leq M$:

• 2-cycles up to *K*-cycles,

- 2-cycles up to *K*-cycles,
- ℓ -cycles resolved by an ℓ -cyclic strategy

- 2-cycles up to *K*-cycles,
- ℓ -cycles resolved by an ℓ -cyclic strategy
- exchanges ℓ symbols

- 2-cycles up to *K*-cycles,
- ℓ -cycles resolved by an ℓ -cyclic strategy
- exchanges ℓ symbols
- requires $\ell 1$ dimensions

- 2-cycles up to K-cycles,
- ℓ -cycles resolved by an ℓ -cyclic strategy
- exchanges ℓ symbols
- requires $\ell 1$ dimensions
- efficiency $\ell/(\ell-1)$

For the K-user Y-channel with $N \leq M$:

- 2-cycles up to K-cycles,
- ℓ -cycles resolved by an ℓ -cyclic strategy
- exchanges ℓ symbols
- requires ℓ − 1 dimensions
- efficiency $\ell/(\ell-1)$
- DoF region described by

$$\sum_{i=1}^{K-1} \sum_{j=i+1}^{K} d_{p_i p_j} \le N, \quad \forall \mathbf{p}$$

where \mathbf{p} is a permutation of $(1, 2, \cdots, K)$.

For the K-user Y-channel with $N \leq M$:

- 2-cycles up to *K*-cycles,
- ℓ -cycles resolved by an ℓ -cyclic strategy
- exchanges ℓ symbols
- requires ℓ − 1 dimensions
- efficiency $\ell/(\ell-1)$
- DoF region described by

$$\sum_{i=1}^{K-1} \sum_{j=i+1}^{K} d_{p_i p_j} \le N, \quad \forall \mathbf{p}$$

where \mathbf{p} is a permutation of $(1, 2, \cdots, K)$.

Cyclic communication requires joint encoding over multiple sub-channels \Rightarrow MIMO Y-channels are in general inseparable!

Outline

From Capacity to DoF

2 MIMO Two-Way Relay Channel

3 MIMO multi-way relay channel

4 MIMO Multi-way Channel

MIMO 3-Way Channel

• $\mathbf{y}_k = \mathbf{H}_{kj}\mathbf{x}_j + \mathbf{H}_{ki}\mathbf{x}_i + \mathbf{z}_k$,

MIMO 3-Way Channel

- $\mathbf{y}_k = \mathbf{H}_{kj}\mathbf{x}_j + \mathbf{H}_{ki}\mathbf{x}_i + \mathbf{z}_k$,
- Capacity scaling (DoF)?

Communication $i \leftrightarrow j$:

• Node *i* sends $\mathbf{x}_i = \mathbf{V}_{ji}\mathbf{u}_i$, node *j* sends $\mathbf{x}_j = \mathbf{V}_{ij}\mathbf{u}_j$

Communication $i \leftrightarrow j$:

- Node *i* sends $\mathbf{x}_i = \mathbf{V}_{ji}\mathbf{u}_i$, node *j* sends $\mathbf{x}_j = \mathbf{V}_{ij}\mathbf{u}_j$
- Alignment at node k: Set span $(\mathbf{H}_{ki}\mathbf{V}_{ji}) = \text{span}(\mathbf{H}_{kj}\mathbf{V}_{ij})$

Communication $i \leftrightarrow j$:

- Node *i* sends $\mathbf{x}_i = \mathbf{V}_{ji}\mathbf{u}_i$, node *j* sends $\mathbf{x}_j = \mathbf{V}_{ij}\mathbf{u}_j$
- Alignment at node k: Set span $(\mathbf{H}_{ki}\mathbf{V}_{ji}) = \operatorname{span}(\mathbf{H}_{kj}\mathbf{V}_{ij})$

Achievable DoF:

• If $M_1 \ge M_2 \ge M_3$, DoF is $2M_2$

Achievable DoF:

- If $M_1 \ge M_2 \ge M_3$, DoF is $2M_2$
- Optimal scheme (genie-aided bound)

Summary

Two-way Relay Channel:

- Quantize-forward achieves similar rate as CF [Avestimehr et al. 10]
- Capacity region known within a constant gap [Nam et al. 10]
- Capacity of the BC phase is known [Oechtering et al. 08]
- Fading and scheduling [Shaqfeh et al. 13]
- Impact of CSIT [Yang et al. 13]
- Impact of direct channels [Avestimehr et al. 10]
- Energy harvesting [Tutuncuoglu et al. 13]
- Multiple relays [Vaze & Heath 09]

Multi-way Relay Channel:

- 3-user LD case with relay private messages, and 4-user LD case [Zewail *et al.* 13]
- Direct links between users [Lee & Heath 13]
- Multi-cast setting: compress-forward [Gündüz *et al.* 13], compute-forward [Ong *et al.* 12]
- Fading case [Wang et al. 12]

Multi-way Channel:

- Capacity of classes of 3-way channels [Ong 12]
- Two-way interference channel [Rost 11]
- Two-way IC (feedback better than info. transmission!) [Suh et al. 13]
- Two-way networks (MAC,BC,TWC) [Cheng & Devroye 14]

MIMO Two-way Relay Channel:

- Diversity-multiplexing trade-off [Gündüz et al. 08], [Vaze & Heath 11],
- Cognition, multiple relays [Alsharoa et al. 13],
- Multi-pair sum-rate optimization in [S. et al. 09],
- DoF of the K-pair case [Lee & Heath 13], [Cheng & Devroye 13],
- Imperfect CSI [Ubaidulla et al. 13], [Zhang et al. 13],

MIMO Multi-way Relay Channel:

- Multi-cluster multi-way relay channels [Tian & Yener 12],
- Performance optimization [Teav et al. 14],
- K-user achievable sum-DoF [Lee et al. 12],
- Full- vs. half-duplex, global vs. local CSI [Lee & Chun 11],

Interesting Problems

- Optimizing the uplink in the two-way relay channel
- Exploiting two-way relaying in larger networks
- Constellations for PLNC and their performance
- Multi-relay cases
- General (approximate) capacity expression for the *K*-user multi-way relay channel
- Extensions of the multi-way channel to K-users
- Fading multi-way channels
- Capacity region study of the MIMO two-way relay channel
- Sum-DoF of *K*-user multi-way relay channels (4-user case characterized recently [Wang 14])
- Rate maximization/power minimization,
- Self-interference cancellation techniques and their impact

All this and more to appear in:

Multi-way Communications

Anas Chaaban and Aydin Sezgin

> new the essence of knowledge

All this and more to appear in:

Thank you for your attention!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Total number of dimensions required to achieve $\mathbf{d} \in \mathcal{D}$:

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Total number of dimensions required to achieve $\mathbf{d} \in \mathcal{D}$:

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

bi-directional	cyclic	uni-directional	
	$\sim \sim \sim$		
2 3	3	3 3	
$N_s = \sum \Delta d$	$b_{ij}^b + \sum 2d_{1j}^c$	$+\sum \sum d^u_{ij}$	$(d^u_{ij} = d_{ij} - d^b_{ij} - d^c_{ij})$
$i=1 \ j=i+1$	j=2	$i=1 j=1, j\neq i$	

Total number of dimensions required to achieve $\mathbf{d} \in \mathcal{D}$:

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

$$N_{s} = \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} \qquad (d_{ij}^{u} = d_{ij} - d_{ij}^{b} - d_{ij}^{c})$$
$$= \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij} - \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} - \sum_{j=2}^{3} d_{1j}^{c}$$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

$$N_{s} = \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} + \sum_{i=1}^{3} d_{ij}^{c} + \sum_{j=2}^{3} d_{ij}^{c} + \sum_{i=1}^{3} d_{ij}^{c} + \sum_{j=2}^{3} d_{ij}^{c} + \sum_{i=1}^{3} d_{ij}^{c} + \sum_{j=2}^{3} d_{ij}^{c} + \sum_{j=2}^$$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

 $N_{s} = \underbrace{\sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b}}_{i=1} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u}}_{j=1, j \neq i} \underbrace{(d_{ij}^{u} = d_{ij} - d_{ij}^{b} - d_{ij}^{c})}_{i=1, j \neq i} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{c} - \sum_{j=2}^{3} d_{1j}^{c} \\ = \underbrace{\max\{d_{12}, d_{21}\} + \max\{d_{13}, d_{31}\} + \max\{d_{23}, d_{32}\}}_{d_{12} + d_{23} + d_{21} + d_{23} + d_{21} = 0, d_{12}^{b} - d_{12}^{c} - d_{13}^{c}}$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

 $N_{s} = \underbrace{\sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b}}_{i=1} + \underbrace{\sum_{j=2}^{3} 2d_{1j}^{c}}_{i=1} + \underbrace{\sum_{j=1, j \neq i}^{3} \sum_{j=1, j \neq i}^{3} 2d_{ij}^{c}}_{i=1} + \underbrace{\sum_{j=1, j \neq i}^{3} \sum_{j=1, j \neq i}^{3} 2d_{ij}^{c}}_{i=1} + \underbrace{\sum_{j=1, j \neq i}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{c}}_{i=1} + \underbrace{d_{ij} - d_{ij}^{b} - d_{ij}^{c}}_{i=1} + \underbrace{d_{ij} - d_{ij}^{b}}_{i=1} + \max\{d_{ij}, d_{ji}\} + \underbrace{d_{ij} - d_{ij}^{c}}_{d_{12} + d_{23} + d_{31} + e_{i} \Rightarrow d_{ij}^{c} = 0, d_{12}^{b} + d_{21} +$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

 $N_{s} = \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{c} + \sum_{i=1}^{3} d_{ij}^{c} + \sum_{j=2}^{3} d_{ij}^{c} + d_{ij}^{c} + d_{ij}^{b} + d_{ij}^{c} + d_{ij}^{b} + d_{ij}^{c} + d_{ij}^{c}$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

 $N_{s} = \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{c} + \sum_{j=2}^{3} d_{1j}^{c} + d_{ij}^{c} + d_{ij}^{b} + d_{ij}^{c} + d_{ij}^{b} + d_{ij}^{c} + d_{ij}^{c}$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

bi-directional cyclic uni-directional $N_{s} = \sum_{a}^{2} \sum_{b}^{c} d_{ij}^{b} + \sum_{c}^{c} 2d_{1j}^{c} + \sum_{c}^{c} \sum_{a}^{c} d_{ij}^{u}$ $(d_{ij}^u = d_{ij} - d_{ij}^b - d_{ij}^c)$ $=\sum_{i}^{3}\sum_{j}^{3}d_{ij}-\sum_{i}^{2}\sum_{j}^{3}d_{ij}^{b}-\sum_{i}^{3}d_{1j}^{c}\qquad (d_{ij}+d_{ji}-d_{ij}^{b}=\max\{d_{ij},d_{ji}\})$ i=1 i=1, $i\neq i$ i=1 i=i+1 $= \max\{d_{12}, d_{21}\} + \max\{d_{13}, d_{31}\} + \max\{d_{23}, d_{32}\} - d_{12}^c - d_{13}^c$ $d_{12}+d_{23}+d_{31}$ e.g. $\Rightarrow d_{12}^c=0, d_{12}^b=d_{21}$ $(d_{12}^c = d_{12} - d_{12}^b \text{ e.g.})$ $= d_{12} + d_{23} + d_{31} - d_{12}^c$ $= d_{12}^b + d_{23} + d_{31}$ $= d_{21} + d_{23} + d_{31}$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

bi-directional cyclic uni-directional $N_{s} = \sum_{a}^{2} \sum_{b}^{c} d_{ij}^{b} + \sum_{c}^{c} 2d_{1j}^{c} + \sum_{c}^{c} \sum_{a} d_{ij}^{u}$ $(d_{ij}^u = d_{ij} - d_{ij}^b - d_{ij}^c)$ $=\sum_{i}^{3} \sum_{j}^{3} d_{ij} - \sum_{i}^{2} \sum_{j}^{3} d_{ij}^{b} - \sum_{j}^{3} d_{1j}^{c} \qquad (d_{ij} + d_{ji} - d_{ij}^{b} = \max\{d_{ij}, d_{ji}\})$ i=1 i=1 $i\neq i$ i=1 i=i+1 $= \max\{d_{12}, d_{21}\} + \max\{d_{13}, d_{31}\} + \max\{d_{23}, d_{32}\} - d_{12}^c - d_{13}^c$ $d_{12}+d_{23}+d_{31}$ e.g. $\Rightarrow d_{12}^c=0, d_{12}^b=d_{21}$ $(d_{12}^c = d_{12} - d_{12}^b \text{ e.g.})$ $= d_{12} + d_{23} + d_{31} - d_{12}^c$ $= d_{12}^{b} + d_{23} + d_{31}$ $= d_{21} + d_{23} + d_{31}$

No cycles $\Rightarrow N_s \leq N$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

bi-directional cyclic uni-directional $\overline{}$ $N_s = \sum_{i=1}^{2} \sum_{j=1, i \neq i}^{3} d_{ij}^b + \sum_{i=2}^{3} 2d_{1j}^c + \sum_{i=1}^{3} \sum_{j=1, i \neq i}^{1} d_{ij}^u$ $(d_{ij}^{u} = d_{ij} - d_{ij}^{b} - d_{ij}^{c})$ $=\sum_{i=1}^{3}\sum_{j=1,\ j\neq i}^{3}d_{ij}-\sum_{i=1}^{2}\sum_{j=i+1}^{3}d_{ij}^{b}-\sum_{i=2}^{3}d_{1j}^{c}\qquad (d_{ij}+d_{ji}-d_{ij}^{b}=\max\{d_{ij},d_{ji}\})$ $= \max\{d_{12}, d_{21}\} + \max\{d_{13}, d_{31}\} + \max\{d_{23}, d_{32}\} - d_{12}^c - d_{13}^c$ $d_{12}+d_{23}+d_{31}$ e.g. $\Rightarrow d_{13}^c=0, \ d_{12}^b=d_{21}$ $(d_{12}^c = d_{12} - d_{12}^b \text{ e.g.})$ $= d_{12} + d_{23} + d_{31} - d_{12}^c$ $= d_{12}^b + d_{23} + d_{31}$ $= d_{21} + d_{23} + d_{31}$

No cycles $\Rightarrow N_s \leq N \Rightarrow All \ \mathbf{d} \in \mathcal{D}$ are achievable

Consider any reliable scheme for the 4-user MIMO MRC

Users can decode their desired signals

Give m_{23} and \mathbf{y}_2 to user 1 as side info.

Now, user 1 has the info. available at user 2

\Rightarrow User 1 can decode m_{32}

Upper bound

User 1 can decode (m_{21}, m_{31}, m_{32}) from $(m_{12}, m_{13}, \mathbf{y}_1, \widetilde{m_{23}, \mathbf{y}_2})$

Upper bound

User 1 can decode (m_{21}, m_{31}, m_{32}) from $(m_{12}, m_{13}, \mathbf{y}_1, \widetilde{m_{23}, \mathbf{y}_2})$

$$\Rightarrow R_{21} + R_{31} + R_{32} \le I\left(\mathbf{x}_r; \mathbf{y}_1, \mathbf{y}_2\right) = I\left(\mathbf{x}_r; \begin{bmatrix} \mathbf{D}_1 \\ \mathbf{D}_2 \end{bmatrix} \mathbf{x}_r + \begin{bmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{bmatrix}\right) \quad \text{P2P Channel}$$

Upper bound

User 1 can decode (m_{21}, m_{31}, m_{32}) from $(m_{12}, m_{13}, \mathbf{y}_1, \widetilde{m_{23}, \mathbf{y}_2})$

$$\Rightarrow R_{21} + R_{31} + R_{32} \le I\left(\mathbf{x}_r; \mathbf{y}_1, \mathbf{y}_2\right) = I\left(\mathbf{x}_r; \begin{bmatrix}\mathbf{D}_1\\\mathbf{D}_2\end{bmatrix} \mathbf{x}_r + \begin{bmatrix}\mathbf{z}_1\\\mathbf{z}_2\end{bmatrix}\right)$$
$$\Rightarrow d_{21} + d_{31} + d_{32} \le \operatorname{rank}\left(\begin{bmatrix}\mathbf{D}_1\\\mathbf{D}_2\end{bmatrix}\right) = N$$

P2P Channel

Upper bound

User 1 can decode (m_{21}, m_{31}, m_{32}) from $(m_{12}, m_{13}, \mathbf{y}_1, \overline{m_{23}, \mathbf{y}_2})$

$$\Rightarrow R_{21} + R_{31} + R_{32} \le I\left(\mathbf{x}_r; \mathbf{y}_1, \mathbf{y}_2\right) = I\left(\mathbf{x}_r; \begin{bmatrix}\mathbf{D}_1\\\mathbf{D}_2\end{bmatrix}\mathbf{x}_r + \begin{bmatrix}\mathbf{z}_1\\\mathbf{z}_2\end{bmatrix}\right)$$
$$\Rightarrow d_{21} + d_{31} + d_{32} \le \operatorname{rank}\left(\begin{bmatrix}\mathbf{D}_1\\\mathbf{D}_2\end{bmatrix}\right) = N$$

Considering different combinations of users gives the desired outer bound

$$\sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{p_i p_j} \le N, \quad \forall \mathbf{p}$$

P2P Channel

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32})$

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$ 2) requires d_{ij}^b sub-channels

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$ 2) requires d_{ij}^b sub-channels
- 2) requires u_{ij} sub-channel
- 3) resolves 2-cycles

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$
- 2) requires d_{ij}^{b} sub-channels
- 3) resolves 2-cycles

4) residual DoF
$$d'_{ij} = d_{ij} - d^b_{ij}$$

 d_{12}

 d_{21}

 d_{31}

Resource allocation

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$ 2) requires d_{ij}^b sub-channels 3) resolves 2-cycles 4) residual DoF $d'_{ij} = d_{ij} - d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

 d_{23}

3

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$ 2) requires d_{ij}^b sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

1) set $d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d_{ij}', d_{jk}', d_{ki}'\}$

Consider a DoF tuple $d = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$ 2) requires d_{ij}^{b} sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

1) set
$$d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d_{ij}', d_{jk}', d_{ki}'\}$$

2) requires $2d_{ij}^c$ sub-channels

Consider a DoF tuple $d = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ii}^b = d_{ii}^b = \min\{d_{ii}, d_{ii}\}$ 2) requires d_{ij}^{b} sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ii} = d_{ii} d^b_{ii}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

- 1) set $d_{ij}^c = d_{ik}^c = d_{ki}^c = \min\{d_{ij}', d_{ik}', d_{ki}'\}$ 2) requires $2d_{ii}^c$ sub-channels
- 3) resolves 3-cycles

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$
- 2) requires d_{ij}^b sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

- 1) set $d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d_{ij}^c, d_{jk}^c, d_{ki}^c\}$
- 2) requires $2d_{ij}^c$ sub-channels
- 3) resolves 3-cycles
- 4) residual DoF $d_{ij}^{\prime\prime}=d_{ij}^{\prime}-d_{ij}^c$

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$
- 2) requires d_{ij}^b sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

- 1) set $d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d'_{ij}, d'_{jk}, d'_{ki}\}$ 2) requires $2d_{ij}^c$ sub-channels 3) resolves 3-cycles
- 4) residual DoF $d_{ij}^{\prime\prime}=d_{ij}^{\prime}-d_{ij}^c$

Uni-directional:

1) set $d_{ij}^u = d_{ij}^{\prime\prime}$

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$
- 2) requires d_{ij}^b sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

- 1) set $d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d_{ij}', d_{jk}', d_{ki}'\}$ 2) requires $2d_{ij}^c$ sub-channels
- 3) resolves 3-cycles
- 4) residual DoF $d_{ij}^{\prime\prime}=d_{ij}^{\prime}-d_{ij}^c$

Uni-directional:

- 1) set $d_{ij}^{u} = d_{ij}''$
- 2) requires d_{ij}^u sub-channels

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$
- 2) requires d_{ij}^b sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

- 1) set $d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d'_{ij}, d'_{jk}, d'_{ki}\}$ 2) requires $2d_{ij}^c$ sub-channels
- 3) resolves 3-cycles
- 4) residual DoF $d_{ij}^{\prime\prime}=d_{ij}^{\prime}-d_{ij}^c$

Uni-directional:

- 1) set $d_{ij}^{u} = d_{ij}''$
- 2) requires d_{ij}^u sub-channels

 \mathbf{d} achieved!