Ion dynamics in double barrier memristive devices

Sven Dirkmann\(^1\), Mirko Hansen\(^2\), Martin Ziegler\(^2\), Enver Solan\(^1\), Karlheinz Ochs\(^1\), Hermann Kohlstedt\(^2\), Thomas Mussenbrock\(^3\)

\(^1\) Ruhr-University Bochum, Germany
\(^2\) Christian-Albrechts-University Kiel, Germany
\(^3\) Brandenburg University of Technology Cottbus-Senftenberg, Germany

Dresden, March 23, 2017
The authors gratefully acknowledge financial support provided by the German Research Foundation “DFG” in the frame of Research Group For 2093 “Memristive Devices for Neural Systems”.

1www.for2093.uni-kiel.de
1. The Double Barrier Memristive Device

2. Simulation Approach
 - Simulation of ions: Kinetic Monte Carlo
 - Simulation of electrons: Lumped element model

3. Simulation Results
 - I/U-Characteristic
 - Influence of charged point defects on resistance change
 - Voltage dependency of resistance change

4. Conclusion
Double Barrier Memristive Device\(^2\)

- Incorporated mechanisms are i) **motion** of charged defects, ii) **Adsorption** at Au surface and iii) **Desorption**.

- Ionic processes simulated using the **kinetic Monte Carlo** method.

kinetic Monte Carlo

\[k_{ij} = \nu e^{-\frac{E_{ij}}{k_BT}} \]
Lumped Element Model

D: Schottky diode, representing the metal-semiconductor contact.

R: Resistance, representing memristive layer.

VDR: Varistor, representing the tunnel barrier.

\[^3\text{Solan E. et al., arXiv:1701.08068 (2017)}\]
I/U-Characteristic

(a) Experiment

(b) Simulation

S. Dirkmann | Ruhr University Bochum
Defects and Resistance Change

Average Defect Distribution

$t = 10 \text{ s}$

$t = 30 \text{ s}$
- Metal-semiconductor contact provides an effective threshold for ionic motion.
Simulated findings could be validated by experimental findings.
1. The double barrier memristive device is a very promising device, especially for implementation in neural networks.

2. Kinetic simulations gave interesting insights into physical processes during resistive switching.
 - Ionic motion has been found to be the main reason of resistive switching.
 - A found threshold voltage for resistive switching could be linked to the metal-semiconductor contact.

3. Simulation and experimental results are in good agreement.
