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Abstract—Synchronization has been associated with funda-
mental brain functions, especially learning behavior. Electrical
circuits are candidates to mimic the tremendous information
processing ability of simple brain structures due to their inherent
massive parallelism. This paper gives an electrical interpretation
of synchronization behavior in linear, identical subsystems with
diffusive couplings. We consider a general linear state-space
model for which we synthesize a minimal, generic electrical
circuit. A conductance models the couplings between subsys-
tems to form the overall electrical system. To investigate the
synchronization behavior, we show how a beneficial placement
of transformers decouples the overall circuit and consequently
obtain many smaller circuits that are easier to examine. It is
shown that the asymptotic stability in these decoupled circuits
leads to a vanishing synchronization error over time. Based on
this observation, we are able to formulate a synchronization
condition that is entirely dependent on electrical quantities. One
benefit, among others, is that by the notion of passivity, the
asymptotic stability in some electrical circuits becomes evident
without any further calculation. Lastly, we apply these insights
to a network of interconnected Chua circuits mimicking neuron
populations and their synaptic coupling structure. We investigate
different topologies, such as a two ring-topology with a bridge-
synapse connection.

I. INTRODUCTION

Synchronization is a hot topic in research today, especially
in the context of artificial intelligence and neural networks.
It is of interest for a variety of different applications. For
example, in order to understand several cognitive functions
in the brain, such as perceived visual signal processing [1],
processing sensor information [2], event prediction [3], motor
control [4], and gait patterns [5]. It has also been extensively
investigated in the field of automatic control where it is appli-
cable, among others, to autonomous vehicle platoons [6] and in
the context of oscillators. For example, RLC-coupled van der
Pol oscillators [7] and inductively-coupled chaotic oscillators
[8] have both been investigated in a ring topology. Other

prominent oscillators examples include the Kuramoto model
[9], [10] or the Chua circuit [11], [12]. The latter is a third-
order, minimal electrical circuit that is of particular interest
due to its chaotic behavior. Its application examples include
music compositions [13], evolution of natural languages [14],
secure wireless [15], optical laser communication [16], but
most importantly in the context of this work simulations of
brain dynamics [17]. Recently, a distributed control scheme
was established to synchronize two Chua oscillators in a
network without direct interconnection [18].

In order for subsystems to synchronize, they must be able
to interchange information about some or all of their states
through a coupling network. Besides the particular coupling
elements, the interconnection topology plays an important role
and has been extensively studied in the context of neural
networks [19], [20]. While synchrony is generally desired in
neural networks because it is associated with memorizing and
learning [21], excessive synchrony can yield to neurological
diseases, such as essential tremor [22], epilepsy [23] or Parkin-
son’s disease [24]. It is therefore desirable to establish an easy
to check synchronization condition.

Electrical circuits in general are known to perform comput-
ing tasks very efficiently due to their inherent massive paral-
lelism and therefore are promising candidates to solve complex
tasks [25]–[27]. This is especially beneficial when large setups
are investigated, e.g. artificial neural networks. Additionally,
electrical circuits are in general easy to mass-produce, cost
efficient and can be realized in nanoscale integrated circuits.
However, the general synthesis of an electrical circuit is not
trivial, but has for example been done to mimic an amoeba’s
ability to anticipate patterns [28], [29]. Additionally, once a
circuit realization is established, approaches like the wave
digital concept [30], [31] can be exploited to derive highly
flexible software emulators, as it has been done in the context
of resistors with a memory [32], [33]. Since the resulting
emulator enables parameter manipulation during runtime, in-
operando optimization and parameter fitting can be utilized to
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work towards possible hardware realizations [34].
The goal of this work is to obtain an electrical interpretation

of the synchronization condition known from automatic
control for linear identical subsystems with linear, diffusive
coupling. This requires synthesizing an electrical circuit of
the subsystem and the interconnection network based on a
general linear state-space model.

The paper is structured as follows. In Sec. II we synthesize
an electrical circuit that describes the dynamics of a single
linear state-space model of arbitrary order. The modeling of a
connection element, as well as the general network topology
description is stated in Sec. III. Accordingly, in Sec. IV
multiple of the linear systems described in Sec. II are now
interconnected to form the overall system with the goal of
synchronization. Consecutively, it is shown in detail which
electrical devices can be used to decouple these subsystems for
a more compact and structural study. Adding multiple specific
transformers to this decoupled setup facilitates an observation
of the synchronization error whose asymptotic stability is
proven in Sec. V. Lastly, the theory is applied to a set of Chua
circuits each mimicking action potential activity of a neuron
population on a high abstraction level. After linearization, we
apply the methods derived in this work to investigate the
synchronization behavior of the setup for various topologies.
We verify the theoretical results by simulating our application
example with integrated circuit simulation software LTspice.
A summary concludes this work.

We understand this manuscript as laying the theoretical
groundwork for eletrical interpretation of synchronization and
a first step towards understanding how bio-inspired electrical
circuits can be utilized for neural synchronization. In short,
the main contributions of this work are the following.

(i) A generic approach for synthesis of an electrical circuit
for linear state-space models is established

(ii) A procedure to electrically decouple a set of intercon-
nected linear subcircuits with the aim of synchronization
is presented

(iii) The asymptotic behavior of the decoupled subsystems
then serves the purpose to give information about whether
the originally coupled system will synchronize or not. The
result is an electrical interpretation of synchronization
condition.

(iv) The notion of passivity is helpful to judge the decoupled
subsystems’ asymptotic behavior easily

II. SUBSYSTEM SYNTHESIS

The synthesis part of this work will be separated in the
synthesis of the subsystems, which is addressed in this
section, and the synthesis of the interconnection network,
which is subject to the subsequent section.

We start with a system of n ∈ N linear state-space models
of order r ∈ N with identical dynamics

żµ(t) = Azµ(t) + bxµ(t), yµ(t) = cTzµ(t). (1)

where A ∈ Rr×r, b, c ∈ Rr×1, zµ(t) ∈ Rr×1, xµ(t), yµ(t) ∈
R and µ = 1, . . . , n. For the sake of readability, we drop

the time arguments in the sequel. To synthesize an electrical
circuit that mimics the dynamical behavior of (1), we multiply
(1) with a constant matrix C1r, C > 0, where 1r is the r× r
identity matrix. Next, we decompose A into its symmetric and
anti-symmetric parts, Gs and Ga, respectively. This results in

Cżµ + [Gs + Ga]zµ = iµ, (2)

with Gs = −C2
[
A + AT

]
, Ga = −C2

[
A−AT

]
and

iµ = Cbxµ, allowing for an electrical circuit synthesis with
multiport devices as depicted in Fig. 1.

iµ

uµ C1rn

Cu̇µ

Ga

Gauµ

Gs

Gsuµ

Fig. 1: Electrical synthesis of a general linear state-space
model through a parallel interconnection of capacitors and
multiport conductances.

When we associate the state vector zµ with a set of voltages,
this can be synthesized by r capacitors whose currents are
described by iµ = Cu̇µ, respectively. As the overall current
of a subsystem iµ is also a summation of multiple sum-
mands, this indicates that each electronic device representing
one of these summands is interconnected by a Kirchhoff
parallel interconnection network. While the r capacitors are
straightforward to implement, the question remains on how
to realize the conductances Gs and Ga. In the following, we
will show that the key elements in this context are the general
multiport gyrator and transformer as shown in Fig. 2, which
are discussed here in detail. It is easy to check that the setup of
m ·n two-port gyrators in Fig. 3 (bottom left) is the realization
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Fig. 2: m×n multiport gyrator with its scalar realization (left)
and m × n multiport transformer with its scalar realization
(right).
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of the multiport gyrator shown in Fig. 3 (top left). To do so,
we first investigate the two-port gyrator equations

iµν = gνµu
′
ν , i′µν = −gνµuµ. (3)

Next, we account for the parallel interconnection network, for
which it holds that

iµ =

n∑
ν=1

iµν =

n∑
ν=1

gνµu
′
ν , i′ν =

n∑
µ=1

i′µν = −
n∑
µ=1

gνµuµ.

(4)

Once (4) is expressed in matrix-vector notation, this yields

i = GTu′, i′ = −Gu, (5)

respectively, which coincides with Fig. 2 (top left). Likewise,
the configuration of m · n two-port transformers displayed in
Fig. 2 (bottom right) can be checked to fulfill the equations of
the multiport transformer of Fig. 2 (top right), which is omitted
here for the sake of brevity. In the following, it is explained
how the multiport gyrator and transformer are essential in the
synthesis of the symmetric and antisymmetric parts of the
system matrix A.

Asymptotically stable subsystems, which are identifiable by
a positive definite symmetric part Gs, are of little interest,
as they converge to the trivial solution zµ = 0 and hence
synchronize without any requirement of interconnection. Our
work therefore focuses on subsystems which are marginally
stable or unstable. To synthesize the symmetric part, we utilize
the eigenvalue decomposition Gs = NT

s GdN s where Gd is
a diagonal matrix containing the r real eigenvalues which can
be both positive and negative. N s is the r × r eigenmatrix
containing the eigenvectors. This enables us to represent the
symmetric part by r conductances in conjunction with at
most r2 transformers with transmission ratios taken from
the eigenmatrix N s, see Fig. 3 (left). Note, this approach
causes negative eigenvalues to be represented by negative
conductance values. For the anti-symmetric part Ga we utilize
the decomposition Ga = GG − GT

G = −GT
a , where GG

is a strictly lower triangular matrix, as shown in Fig. 3
(right). Consequently, it holds for the antisymmetric part that
ia = Gau = GGu − GT

Gu. Starting from (5), this can be
achieved by making sure that u = u′ and ia = iG − i′G,
which is attained by interconnecting the multiport transformer
as shown in Fig. 3 (right).

u

is

Gs

Ns :1

is

u

i′s

u′ Gd

ia

u Ga

ia

u

iG i′G

GT
G

Fig. 3: Conductance matrix Gs, realized by a multiport trans-
former in combination with a diagonal conductance matrix
Gd (left). Conductance Ga with its realization by a multiport
gyrator in short-circuit configuration (right).

With the details regarding the scalar realization of Gs and
Ga discussed, we now incorporate the details of Fig. 3 into
the general setup of Fig. 1. This yields the electrical circuit of

Fig. 4. Note, although we still use the multiport description
for reasons of efficient depiction, all underlying one-port
realizations have been discussed above. Consequently, Fig. 4
contains all these information. It is worth noting that the
complementary electrical quantities uµ and iµ at the port are
the input and output signals.

C1

iµ

uµ

Cu̇µ GGuµ GT
Guµ

GT
G Ns:1

Gsuµ

u′
µ Gd

Gdu
′
µ

Fig. 4: Detailed multiport depiction of the electrical circuit
in Fig. 1 that together with the multiport gyrator and trans-
former of Fig. 2 efficiently represents the underlying one-port
realization.

III. COUPLING NETWORK SYNTHESIS

To achieve synchronization in unstable subsystems, cou-
pling between the subsystems is essential. Throughout this
work we assume linear diffusive coupling with constant cou-
pling strengths. From a graph theoretical point of view, the
subsystems can be associated with a set of vertices, where
the subsystem µ is represented by vertex aµ. Then, edge
bκ = (aµ, aν) exists if subsystems µ and ν are connected.
Note that to capture every connection only once, we choose the
direction of all edges such that they originate from the lower
indexed subsystem and are directed towards the higher indexed
subsystem. Additionally, κ = 1, . . . , k, where k is the total
number of interconnections in the interconnection network.
Specifically, k = 0 reflects the case where no subsystems
are interconnected and k = n[n−1]

2 implies a fully connected
topology. With this information, the network is interpreted as
a graph and we define the incidence matrix N ∈ Rn×k, with
elements nµκ of the topology as

nµκ =


+1, if bκ = (·, aµ),

−1, if bκ = (aµ, ·),
0, otherwise.

(6)

In this context, bκ = (·, aµ) indicates that edge bκ originates
from an arbitrary vertex and incides at vertex aµ whereas bκ =
(aµ, ·) indicates that edge bκ originates from vertex aµ and
incides at an arbitrary vertex. In a circuit description, we assign
current iµ and voltage uµ to subsystem µ, and the currents
and voltage between subsystems µ and ν are referenced as
jµν and vµν , respectively. By establishing the Kirchhoff node
and mesh equations, we obtain

vµν = uµ − uν , iµ =
∑
λ>µ

jµλ −
∑
λ<µ

jλµ, (7)

cf. Fig. 5 (left), with iµ, jµν ∈ Rr.
Note that vµν and jµν which are obtained by differences of

uµ, uν and iµ, iν , cf. (7), are only of interest if subsystems
µ and ν are coupled. The orientation of jµν are chosen such
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jκνjλµ jµν Rc Lc

iµ

uµ uν

vµν
iν

jκνjλµ jµν

W c

Cc

iµ

uµ uν

vµν iν

Fig. 5: Electrical circuit of a simple synapse as proposed in
[35] (left) and its dual circuit (right).

that the (directed) incidence matrix N describes the relation
between the quantities of the subsystems and the quantities of
the interconnection network.
The electrical circuit of a simple synapse model as described
in [35] is shown in Fig. 5. Its underlying electrical equations
are

vµν = −Rcjµν −Lcj̇µν .

However, the input of the synthesized state-space model of
Fig. 4 is modeled by a current. Therefore it seems natural to
rather investigate the dual circuit of the synaptic model, where
the roles of voltage and current are interchanged. This can be
seen in the electrical equations for the dual representation as
shown Fig. 5 (right), which are

jµν = −Wcvµν −Ccv̇µν , (8)

with Wc = Wcbc
T and Cc = Ccbc

T . For the sake of a more
condensed representation, we deploy the vec-operator, where
vec(·) stacks the columns of a matrix on top of one another to
form a vector. Now, if we define vectors j = vec(J) ∈ Rrk
where J ∈ Rr×k contains all jµν column-wise in ascending
order and v = vec(V ) ∈ Rrk with V ∈ Rr×k contains all
vµν column-wise in ascending order, we can rewrite (8) with

v = N̂
T
u, i = N̂j, (9)

where u =
[
uT1 . . . uTn

]T ∈ Rrn, i =
[
iT1 . . . iTn

]T
∈ Rrn

and N̂ = N ⊗ 1r with N being the incidence matrix as
described in (6) and ⊗ denoting the Kronecker product. By
looking at the equations of the multiport transformer in Fig. 2,
it becomes clear that we can utilize a 1 : N̂ -transformer
to synthesize (9) as will be shown later. With the vector

u

i
1:N̂

v

j

Ŵd Ĉd

i

Ŵ Ĉu

Fig. 6: Multiport interconnection network representation by
a transformer whose transmission ratio depends on incidence
matrix N̂ (left). Effective interconnection multiport represen-
tation in instances i and u, respectively (right).

descriptions u, i and v, j, we rewrite the first part of (8) as

j = −Ŵdv − Ĉdv̇, (10)

with Ŵd = 1n ⊗Wc and Ĉd = 1n ⊗ Cc. The according
circuit is shown in Fig. 6 (left). Together with (9), the device
equation can be written in terms of the vertex currents and
voltages

i =− N̂ŴdN̂
T
u− N̂ĈdN̂

T
u̇

=− [N ⊗ 1r][1n ⊗Wc][N
T ⊗ 1r]u

− [N ⊗ 1r][1n ⊗Cc][N
T ⊗ 1r]u̇.

By utilizing the definition of the Laplace matrix L = NNT ∈
Rn×n and the properties of the Kronecker product, we obtain
the compact relationship

i = −[NNT ⊗Wc]u− [NNT ⊗Cc]u̇

= −[L⊗Wc]u− [L⊗Cc]u̇

= −Ŵu− Ĉu̇,

(11)

with Ŵ = L⊗Wc and Ĉ = L⊗Cc. The expressions in (11)
result in the interconnection network description as shown in
the right-hand side of Fig. 6.

IV. COUPLED SYSTEM

Combining the insights from Figs. 1 and 6, we can describe
the multiport coupled system as shown in Fig. 7. The equation
to describe the overall system is[

C1r + Ĉ
]
u̇ +

[
Ĝs + Ĝa + Ŵ

]
u = 0, (12)

with Ĝs = 1n ⊗Gs and Ĝa = 1n ⊗Ga.

Cu̇

C1rn u Ĝs

Ĝsu

Ĝa

Ĝau

Ŵ Ĉ

i

Fig. 7: Coupled overall system description, cf. Figs. 1 and 6.

Note that this description of the system still incorporates
coupled subsystems, since Ŵ is not block diagonal. In the
following, we will describe on how to arrive at decoupled
electrical circuits that will be used later on for determining
the synchronization condition by block diagonalizing Ŵ with
multiport transformers.

Since the matrix

Ŵ = N̂Ŵ dN̂
T

=
[
N̂Ŵ dN̂

T
]T

= Ŵ
T

(13)

is symmetric, there always exists an eigenvalue decomposition
of Ŵ with eigenmatrix T̂ = T ⊗ 1r, T ∈ Nn×n, such that
T̂ is orthogonal. Now, we elaborate on how to electrically
diagonalize the interconnection network matrix Ŵ and hence
decouple the subsystems. We start by showing that the neces-
sary steps to achieve the decoupling do not alter the structure
of the subsystems.

Remark 1. A state transformation with transformation matrix
T̂ can electrically be realized by a 1 : T̂ and a T̂ : 1 multiport
transformers if and only if T̂

T
T̂ = 1.
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u u′

i i′

1:T̂ T̂ :1

i′′

u′′

Fig. 8: Two multiport transformers with transformation ratios
1 : T̂ and T̂ : 1 cascaded to form a neutral element as u = u′′

and i = i′′.

First, by interconnecting a 1 : T̂ transformer and a T̂ :
1 transformer, as shown in Fig. 8, the resulting underlying
equations are

u′ = T̂
T
u, u′ = T̂

T
u′′,

i = T̂ i′, i′′ = T̂ i′.
(14)

Since T̂ is invertible, this concludes that u = u′′ and i = i′′,
indicating that it is indeed a neutral element. To decouple the
subsystems, we place it in between the subsystems and its
input, as displayed in Fig. 9.

Cu̇

C1rn u Ĝs

Ĝsu

Ĝa

Ĝau

i
1:T̂ T̂ :1

ii′

Ŵ Ĉu u′ u

Fig. 9: Neutral cascade of Fig. 8 inserted between subsystems
and coupling network. Expressing this setup in instances u′, i′

will lead to a decoupled overall system.

Remark 2. Given matrices of appropriate dimensions, an
arbitrary square matrix X̂ = 1n ⊗ X remains invariant
to a regular state transformation with transformation matrix
T̂ = T ⊗ 1r. This becomes evident by the properties of the
Kronecker product which yield

T̂
−1

X̂T̂ = [T−1 ⊗ 1r][1n ⊗X][T ⊗ 1r]

= T−1T ⊗X = 1n ⊗X = X̂.

The subsystem differential equation

Cu̇ + [Ĝs + Ĝa]u = i, (15)

together with the left-hand transformer equations

u′ = T̂
T
u, i = T̂ i′, (16)

leads to CT̂
T
T̂ u̇′ + T̂

T
[Ĝs + Ĝa]T̂ u′ = i′, and hence to

Cu̇′ + [Ĝs + Ĝa]u′ = i′, (17)

as explained in Remark 2. Note, (17) indicates that the
structure of the subsystems remains invariant with respect to
the state transformation. The interconnection network

i = −Ŵu− Ĉu̇, (18)

and the right-hand side transformer equation (16) results in

i′ = −T̂ T
Ŵ T̂u′ − T̂

T
ĈT̂ u̇′

= −[T TLT ⊗Wc]u
′ − [T TLT ⊗Cc]u̇

′

= −[ΛL ⊗Wc]u
′ − [ΛL ⊗Cc]u̇

′,

(19)

where T is chosen as the eigenmatrix of L, such that
ΛL = T TLT = diag {λµ{L}} contains all eigenvalues of
L in ascending order λ1{L} = 0 ≤ · · · ≤ λn{L} on its
main diagonal. If T is chosen as the eigenmatrix of L, then
T̂ = T ⊗1r block-diagonalizes Ŵ and Ĉ simultaneously, as
can be seen in (19). For the electrical circuit, this means that
we decouple the interconnection network without structurally
affecting the independent subsystems, as displayed in Fig. 10
(top). The underlying equation is

[C1r + λµ{L}Cc] u̇
′
µ + [Gs + Ga + λµ{L}Wc]u

′
µ = 0.

(20)

Its condensed representation, cf. Fig. 10 (bottom), beautifully
highlights the structural simplicity of our approach. In the
following it will be shown how the asymptotic stability of
these decoupled subsystems N ′µ, which is significantly easier
to examine compared to the coupled overall system, is the
determining factor in whether synchronization is achieved or
not.

N ′
µ

Cu̇′
µ

C1r u′
µGs

Gsu
′
µ

Ga

Gau
′
µ

λµWc

i′µ

λµCc

C1r + λµCc Gs +Ga + λµWcu′
µ

Fig. 10: Decoupled systems N ′µ in the quantities u′µ, i
′
µ after

the transformation (top). Its condensed representation (bottom)
truly reveals the simple structure.

V. ASYMPTOTIC STABILITY OF ERROR DYNAMICS AND
SYNCHRONIZATION CONDITION

A. Error System and Synchronization Condition

Before the derivation of the synchronization error, we
highlight important features of the transformation matrix T
in conjunction with the incidence matrix N . Specifically, as it
is known that the row and column sum of the Laplace matrix
L is zero, and its eigenvector t1 = 1√

n
1n is associated with

the eigenvalue λ1{L} = 0, where 1n is the n × 1 all one
vector [36]. Additionally, as the column sum of the incidence
matrix N is always zero, it holds that

NTT = NT
[

1√
n
1n t2 . . . tn

]
=
[
0 NT t2 . . . NT tn

]
=
[
0 E

]
,

(21)
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with E = [NT t2 . . . NT tn] ∈ Rk×[n−1] and tµ being the
µ-th column of T . To monitor the synchronization errors, we
use the incidence matrix to obtain the synchronization errors
from the transformed states u′ (16) by

e = N̂
T
u = N̂

T
T̂ T̂

T
u = [NTT ⊗ 1n]u′. (22)

Together with (21) we obtain

e =

e1...
ek

 = Ê

u
′
2
...
u′n

 =

Ê12 . . . Ê1n

...
. . .

...
Êk2 . . . Êkn


u
′
2
...
u′n

 , (23)

with Ê = E ⊗ 1r, Êκµ ∈ Rr×r, κ = 1, . . . , k and µ =
2, . . . , n. The synchronization errors of (23) are synthesized
by the circuit shown in Fig. 11.

N ′
1 N ′

2 N ′
nu′

1 u′
2

...

u′
n

...

Ê12:1

Êk2:1

Ê1n:1

Êkn:1

e1

ek

. . .

. . .

. . .

. . .

Fig. 11: Synchronization error system e1, . . . , ek obtained by
the decoupled subsystems N ′2, . . .N ′n.

Theorem 1. Consider the overall system of of Fig. 7 and
let the interconnection topology contain at least one spanning
tree. Then, the synchronization errors e vanish, i.e. lim

t→∞
e =

0, if and only if

lim
t→∞

u
′
2
...
u′n

 = 0. (24)

The common asymptotic synchronization trajectory is then
given by u′1.

Proof. Since an overall system with n subsystems is investi-
gated, there exist exactly n − 1 independent synchronization
errors amongst the k synchronization errors in e in (23) if
rank(Ê) = r[n−1]. Thus, the null-space of Ê consists only of
the zero vector and consequently e = 0 implies u′2 = u′n = 0.
Together with (21) we further investigate the rank of E

rank(Ê) = rank(E) rank(1r)

= min {rank(N), rank ([t2 . . . tn])} r
= rank(N) r,

(25)

because T is invertible, consequently has rank(T ) = n and
therefore rank ([t2 . . . tn]) = n − 1 while the rank of N is
rank(N) ≤ n − 1. The rank of N is equal to n − 1 if and

only if λ2{L} 6= 0, which is synonymous with stating that
N belongs to a topology containing at least one spanning
tree [36]. Given such a topology, by (25), the asymptotic
stability of the decoupled subsystems N ′2, . . . ,N ′n of Fig. 10 is
equivalent to the asymptotic stability of synchronization errors

lim
t→∞

u
′
2
...
u′n

 = 0 ⇔ lim
t→∞

e1...
ek

 = 0. (26)

After proving the condition for the asymptotic stability of
the synchronization error, we now focus on the common syn-
chronization trajectory. The common asymptotic synchroniza-
tion trajectory can be determined by the single non-coupled
system N ′1, which is structurally identical to the subsystems
N1, . . . ,Nn. Calculating u′1, we obtain

T̂
T
u =


1√
n
1
T
n ⊗ 1r

tT2 ⊗ 1r
...

tTn ⊗ 1r

u =

[ 1√
n

∑n
µ=1 uµ

∗

]

=
[
u′T1 u′T2 . . . u′Tn

]T
= u′.

(27)

By (27), it can be seen that the initial condition u′10 of N ′1,
is determined by the mean over all initial conditions uµ0 of
all subsystems, resulting in u′10 = 1

n

∑n
µ=1 uµ0. Note that the

coupling does not stabilize the subsystems, it only makes the
synchronization errors e1, . . . , ek asymptotically stable.

A formal procedure to check if subsystems N ′2, . . . ,N ′n are
asymptotically stable is mentioned in Theorem 2.

Theorem 2. Let the interconnection topology contain at least
one spanning tree, then the systems N ′2, . . . ,N ′n of Fig. 10 and
(20) are asymptotically stable if and only if all of the following
matrices’ symmetric parts are positive definite:

[C1r + λµ{L}Cc]
−1

[Gs + Ga + λµ{L}Wc] > 0, (28)

µ = 2, . . . , n.

Since Gs is typically not a positive definite matrix, Wc and
Cc must be chosen such that (28) is satisfied for any topology
L containing at least one spanning tree to synchronize all
subsystems on a common trajectory. Note that by the matrix
inversion lemma, the inverse is

[C1r + λµ{L}Cc]
−1 =

1

C

[
1r −

λ∗µbc
T

1 + λ∗µcT b

]
,

which exists only if 1 + λ∗µc
T b 6= 0, with λ∗µ = λµ{L}Cc

C .
However, there are also ways to check the asymptotic

stability of a circuit without determination of the positive
definiteness of a matrix (and consequently without calculating
an inverse of a matrix). For example, if the circuit synthesis
of subsystems N ′2, . . . ,N ′n only contains passive elements, the
overall circuit is passive, its equilibrium 0 is stable and it is
often times easy to check its asymptotic stability by network
theoretic methods. This insight is exploited in the following
section. Note that for a purely resistive coupling element, the
results presented in Theorem 1 and Theorem 2 coincide with
the system theoretic results known in the literature [37].
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VI. APPLICATION EXAMPLE: NEURON POPULATION
SYNCHRONIZATION BY LINEARIZED CHUA CIRCUIT

In the following we will apply the concept to a set of
oscillators which mimic neuronal activity (superposition of
action potential) of neuron populations. When investigating
large amounts of neurons within a neuron population, some
sort of abstraction is helpful. Here, the chaotic behavior of
a Chua circuit accounts for the abstraction of the neuronal
activity within a neuron population. While a direct biological
interpretation is lost in the process, it serves the purpose
for analysis on a higher level. The goal of this application
example is a first step towards an understanding of neural
synchronization with manageable methods. For this reason,
a simple conductance accounts for the synaptic coupling
strength of the purely electrical synapse.
Although the derived concept only applies to linear systems,
it gives us an idea how to derive an electrical interpretation
of a sufficient synchronization condition in the context of
neuronal networks by the means of linearization. Fig. 12
illustrates the outline of the application example and how the
concept is deployed. Initially, only a coupling between neuron
populations 1 and 3, and 4 and 6 exist, respectively. At t = T1,
further couplings form, such that populations 1, 2 and 3, and
4, 5 and 6 each form a ring, respectively. At t = T2 a bridge-
synapse-like coupling between populations 2 and 6 connects
the two formerly disconnected rings. Every step depicted is
listed below in detail.

A. Technical abstraction

Chaotic oscillators have been used in the literature in the
context of synchronization in neuronal networks [17], [38].
Chua’s circuit [11] is a setup containing the minimal required
number of electrical devices to observe chaotic behavior and
is shown in Fig. 13 (left). We deploy it due to its simplicity
in the context of this work to mimic a conglomerate of action
potentials from neuron populations. It consists of three reactive
elements and an additive piecewise linear active resistor that
is also known as Chua’s diode whose characteristic curve is
illustrated in Fig. 13 (right). Due to the piecewise linearity,
this circuit is an interesting application example.

The underlying, initially nonlinear state-space model is
denoted byu̇v̇
j̇

 =

− 1
C1R

1
C1R

0
1

C2R
− 1
C2R

1
C2

0 − 1
L 0

uv
j

−
 iD(u)

C1

0
0

+

 1
C1

0
0

 i,
yµ =

[
1 0 0

] uv
j

 ,
(29)

where

iD(u) = Gbu+
1

2
[Ga −Gb][|u+ uth| − |u− uth|]. (30)

Note that both conductance values are negative, making the
diode the only active element in the circuit. Due to the
piecewise linearity of the diode, linearizing its characteristic
curve yields valuable information about the circuits behavior.

The Hartman-Grobman theorem [39] furthermore suggests that
the local behavior of the nonlinear system (29) can be charac-
terized by its linearization in the neighborhood of a hyperbolic
equilibrium point. For example, the chaotic behavior known
in the literature by the circuit of Fig. 13 can be explained as
follows. Linearizing the diode around its conductance value
in section II, such that GNL(u) = Gb, and then checking the
eigenvalues of the now linear state-space model reveals that
the overall circuit is asymptotically stable. Consequently, the
circuit is desired to reach the equilibrium point u = 0. To
do so, the diode will cross the borderline between sections I©
and II©. Linearizing the diode around its conductance value
in section I©, such that GNL(u) = Ga reveals however,
that in this case the diode makes the overall circuit unstable.
Consequently, u grows and will cross the borderline between
sections I© and II© again. The constant crossing of the diode
between sections I© and II© is what results in the chaotic
behavior which is known from the literature.

B. Linearization, Decomposition, Sufficient Condition on Syn-
chronization

In the following we have linearized the characteristic curve
of the Chua diode around the conductance value GNL(u) =
Gb which makes the circuit unstable in order to derive a
sufficient condition for the set of 6 coupled Chua oscillators
as depicted in Fig. 12 (top right).

The subsystems Nµ are described byu̇µv̇µ
j̇µ

 =

− 1
C1

[
1
R +Gb

]
1

C1R
0

1
C2

− 1
C2R

1
C2

0 − 1
L 0

uµvµ
jµ

+

 1
C1

0
0

 iµ,
yµ =

[
1 0 0

] uµvµ
jµ

 ,
where the following device parameters have been taken from

[40] for simulation results

L = 7.14 mH, C1 = 5.56 nF, C2 = 50 nF, uth = 1 V,

Ga = −800µS, Gb = −500µS, R = 1.428 kΩ.

There, six linearized Chua circuits N1, . . . ,N6 are intercon-
nected by conductances Wc = 5 mS which is the simplest
model to account for the synaptic coupling strength. Note
that in the case of the Chua circuit an additional capacitor
in the connection element, as shown in Fig. 5 (right), will
influence whether synchronization will be achieved or not.
That is because both b = [ 1

C1
0 0]T and cT = [1 0 0]

only have one nonzero entry, respectively, in the first position.
It follows that Cc is matrix with only one nonzero entry in the
top left position, and this entry is positive for any Cc > 0, cf.
(9). Consequently, the capacitance values [C1r + λµ{L}Cc]
are all positive and hence all capacitors are passive. Therefore,
the interconnection conductances W c are of higher interest
here, as they must compensate the now linearized, but still
active Chua diode. This is why we focus on an interconnection
network purely based on conductances here.
The conductances realize three interconnection topologies over
time, most remarkable in a separated ring topology from
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1′

2′
3′

4′

5′

6′

A

B

C

D

technical abstraction

linearization,
decomposition

sufficient condition
on synchronization

interpretation

principle of locality
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synchronization question

Fig. 12: Top left: Six neuron populations and their synaptic interconnections. Top right: Technical abstraction of the issue
presented in the top left, where systems N1, . . . ,N6 each represent a neuron population and their synaptic interconnections
are modeled by the resistive interconnection network. Bottom right: Decomposition approach presented in this paper yields
a disconnected setup for which it is easier to determine a condition of synchronization. Bottom left: Interpretation of the
decoupled setup reveals equivalent disconnected (simplified) neuron populations with only self-coupling.

L

jµ

C2 vµ C1

R

GNL

iD

iµ
uµ

Nµ

−uth uth

iD(uµ)

uµ
Ga

Gb

Gb

III II

Fig. 13: Single Chua circuit with Chua’s diode GNL (left).
Nonlinear characteristic curve of Chua’s diode with its sections
I and II (right).

T1 ≤ t < T2 and an added bridge-synapse-like connecting the
two rings from t ≥ T2. By a consistent notation of voltages
and currents of the interconnection network in accordance with
(8) and (9), we obtain

Wc = Wcbc
T =

Wc

C1
0 0

0 0 0
0 0 0

 , and Ŵ ν = Lν ⊗Wc,

cf. (11). We now deploy the steps described in the previous
section to obtain the decoupled overall system as shown in

Fig. 11, leading tou̇′µv̇′µ
j̇′µ

 =

− 1
C1

[
1
R +Gb + λµ{Lν}Wc

]
1

C1R
0

1
C2R

− 1
C2R

1
C2

0 − 1
L 0

u′µv′µ
j′µ

,
µ = 1, . . . , 6, ν = 0, 1, 2. The associated decoupled system is
displayed in Fig. 12 (bottom right). For the sake of a simpler
asymptotic stability analysis, we summarize the linearized
diode and the attached conductance λµ{Lν}Wc of every
decoupled subsystem. These are denoted by

Wµ,ν = Gb + λµ{Lν}Wc.

Note that these two device are in parallel and their con-
ductances can therefore be added to obtain a summarized
conductance element. It becomes clear that the topology
influences the eigenvalues of Lν and therefore also the values
of the attached conductances of the decoupled subsystems
and consequently Wµ,ν . Picking up on the final remark of
Section V, it becomes evident that when a conductance Wµ,ν

is nonnegative, the according subsystem N ′µ contains only
passive elements and hence is asymptotically stable. This is
because its admittance function can be expressed as

Y(p) = Wµ,ν + Y0(p),
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Fig. 14: Simulation results for the setup of Fig. 12 (bottom) and its synchronization errors with sparse coupling (0 ≤ t ≤ T1),
separate ring topology without (T1 < t ≤ T2) and with bridge-synapse interconnection (t > T2).

where Y0(p) accounts for the part containing C1, C2, L
and R, and since all elements are passive it holds
that Re(p) ≥ 0 ⇒ Re(Y0(p)) ≥ 0. Hence, it
follows that the circuit is asymptotically stable as
Re(p) ≥ 0⇒ Re(Y(p)) > 0, if Wµ,ν > 0 holds. Specifically,
Re(Y0(p)) = 0 is reached when p = ±iω0, where ω0 is
the resonance frequency of the oscillatory part consisting
of C2 and L. With that knowledge it is straight forward to
analyze the decoupled subsystems. The simulation results of
N1, . . . ,N6 and their respective output voltages u′1, . . . , u

′
6

generated with integrated circuit simulator software LTspice
are shown in Fig. 14.

From 0 ≤ t ≤ T1, the Laplace matrix is

L0 =


1 0 −1 0 0 0
0 0 0 0 0 0
−1 0 1 0 0 0

0 0 0 1 0 −1
0 0 0 0 0 0
0 0 0 −1 0 1

 ,

and it can be seen that indeed u′2, . . . , u
′
4 are unstable as

expected since λ2{L0} = λ3{L0} = λ4{L0} = 0 and
consequently W2,0 = W3,0 = W4,0 = −800 µS. Note that
during this time span, only a coupling between systems N1

and N3, and N4 and N6 exist. As suggested by the course
of e13 and e46, these two pairs synchronize separately. In the
following time period where T1 < t ≤ T2, we have two ring
topologies which are not yet connected to one another which
can be seen from Fig. 12 (top left). This is indicated by the

block diagonal structure of

L1 =


2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0

0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

 .

By calculating W2,1 = −800 µS and W3,1 = W4,1 = W5,1 =
W6,1 = 14.2 mS we know that subsystems N ′3, . . . ,N ′6 are
asymptotically stable due to passivity, which is also observable
in the middle part of Fig. 14. The trajectory of the synchroniza-
tion errors indicate that each of the two separate ring topolo-
gies synchronize (intra-ring synchronization). Obviously, an
inter-ring synchronization is not yet possible as the two rings
are unlinked at this moment. This however changes when at
t = T2 the bridge-synapse-like connection between the rings
is established. The according Laplace matrix L2 is

L2 =


2 −1 −1 0 0 0
−1 3 −1 0 0 −1
−1 −1 2 0 0 0

0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 −1 0 −1 −1 3

 ,

and it can be seen from W2,2 = 1.4 mS, W3,2 = W4,2 =
W5,2 = 14.2 mS and W6,2 = 22 mS that only now all
subsystems N ′2, . . . ,N ′6 become asymptotically stable which
is observable in Fig. 14. Hence, all synchronization errors
now vanish asymptotically, including e26, such that inter-ring
synchronization is established. One interesting observation is
that the intra-ring synchronizations are temporarily broken up
in order to then establish the overall synchronization.
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Fig. 15: Simulation results for the nonlinear setup of Fig. 12 (top) to verify the sufficient condition of synchronization with
sparse coupling (0 ≤ t ≤ T1), separate ring topology without (T1 < t ≤ T2) and with bridge-synapse interconnection (t > T2).

C. Interpretation, Principle of Locality

By interpreting the decomposing subsystems N1, . . . ,N6

into its decoupled equivalents N ′1, . . . ,N ′6, the question of
synchronization can be answered easier. This becomes even
more evident if we interpret the decomposition in the context
of neuron populations which is done in Fig. 12 (bottom
left). In the previous Section it was shown that due to the
linearization, the structure of the subsystems remains invariant
during the decomposition procedure. Therefore, the neuron
populations are not effected, just the interconnection struc-
ture. Because the decomposition is done in a manner such
that the coupling structure in diagonal, all interconnections
are translated into equivalent self-couplings exclusively. We
therefore are left with the same set of neuron populations
with a synaptic connection to themselves. The behavior of this
new set of neuron populations gives insight of the question of
synchronization, but with the difference that the principle of
locality is applicable here, since the neuron populations do
not influence one another and can be investigated separately.
Consequently, the complexity of examining synchronization in
a neural network like this does not scale with the number of
neuron populations but remains constant.

D. Verification of Synchronization

The final step is to showcase that the statements made
for the linearized model regarding synchronization are valid
for the nonlinear case as well. The simulation results for
the original nonlinear system, again generated by LTspice,
is shown in Fig. 15 and the following can be observed. For
0 ≤ t ≤ T1, e13 and e46 vanish, as it was for the linearized
case. In the next period from T1 < t ≤ T2, we also notice
the intra-ring synchronization which was observable before
as well. Finally, for t > T2, the inter-ring synchronization
is achieved asymptotically as indicated by the course of e26
and the intra-ring topology is temporarily disturbed in order

to achieve the state of complete synchronization. A different
viewpoint is provided by Fig. 16, where the trajectories of
subsystems µ = 2 and µ = 6 are visualized. Here, the
typical double attractor pattern of the chaotic Chua circuit
can be observed. Furthermore, the course of e26 has been
used as the coloring scheme for the trajectory of subsystem
µ = 6. It can be observed in detail what course the trajectory
takes from start (indicated by the black “X”) until global
synchronization is achieved as indicated by the continuously
green colored part at the top. In summary, the important and
overriding questions regarding the synchronization behavior of
the coupled nonlinear setup can be answered by the linearized
and decomposed setup.

VII. CONCLUSION AND FUTURE RESEARCH

In this work, a generic approach for synthesis of a lin-
ear state-space model with the aim of synchronization is
presented. First, the state variable has been interpreted as
a voltage, leading the differential equation to represent a
Kirchhoff nodal equation with capacitors and conductances
as the proper electrical devices. In this context, a condensed
representation of both synthesized circuits has been achieved
by defining multiport circuit elements such as the multiport
gyrator. Next, a step by step instruction has been presented on
how a strategically smart placement of a multiport transformer
can help to shift perspective in order to check decoupled
subsystems for synchronization rather than a coupled overall
setup. This enabled the derivation of the main contributions of
this work besides the synthesis of the electrical circuits: First,
a synchronization condition based on the asymptotic stability
of the decoupled subsystems (rather than the coupled overall
system) has been established. These decoupled subsystems
are structurally identical to the coupled subsystems with the
same electrical device values. They only differ in their initial
conditions. Second, it has been shown that the electrical
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Fig. 16: Trajectories of Chua circuits µ = 2 (left) and µ = 6 (right) showing the typical chaotic attractor pattern. The color
highlights the course of synchronization error e26, where the continuously green colored trajectory on top indicates that global
synchronization has been achieved.

interpretation of the synchronization condition is beneficial,
since passivity of electrical devices within the circuit is easy
to check without calculation. In many cases, the asymptotic
stability of a circuit can be explained by the means of passivity
and in those cases no calculation of eigenvalues to check
for definiteness is necessary. Hence, this approach can be
easier to handle compared to the classical system-theoretical
approach. In the subsequent simulation scenario we have
shown an example where this benefit is apparent. We have
investigated a network of neuron populations with synaptic
interconnections which was modeled by a set of coupled Chua
circuits. We have explicitly shown how the interconnection
topology affects the decoupled subsystems and how we have
determined the satisfaction of the synchronization condition
without calculating the eigenvalues of a system matrix.

For future research it is interesting to expand the concept of
synthesizing an electrical circuit for nonlinear subsystems with
possible nonlinear coupling with memory. While there exist
simple electrical realizations of hybrid synapses incorporating
reactive elements like capacitors and inductors [35], [41], the
goal must be towards nonlinear synapses with a memory. Here,
a memristor is interesting for future research since it has been
shown to enable spike timing dependent plasticity [42]. That
however will require a modified approach, as the decoupling
of the subsystems will not be successful in the nonlinear case
with the concept presented in this work. Additionally, it might
be interesting to allow the interconnections between subsys-
tems to be described by differential equations, as for example
in [43]. That would enable the derivation of a generic approach
on how to synthesize and analyze neuromorphic applications,
such as neuron populations with Hebbian learning rule or spike
timing dependent plasticity.
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