An FPGA Implementation of a Memristive System Based on Wave Digital Principles

E. Solan, B. Janssen, K. Ochs, M. Hübner
Contents

1 Motivation

2 Memristive Emulator

3 Wave Digital Emulation

4 FPGA Implementation

5 Conclusion and Outlook

6 Acknowledgment
Contents

1 Motivation

2 Memristive Emulator

3 Wave Digital Emulation

4 FPGA Implementation

5 Conclusion and Outlook

6 Acknowledgment
Motivation

Why Emulators?

- memristive devices in neuromorphic circuits
- simulation models for reproducible analyses
- huge number of synapses in the brain
- simulations of neuromorphic circuits are very time-consuming

Real-time capable emulators!
Contents

1 Motivation

2 Memristive Emulator

3 Wave Digital Emulation

4 FPGA Implementation

5 Conclusion and Outlook

6 Acknowledgment
Memristive Emulator

Hardware Emulator

Advantages
- efficiency
- common components: suitable for fabrication
- integrability - electrical circuits

Limitations
- fixed functionality
- coupled active components - stability problems
- restricted for a certain application

Reconfigurable emulators based on wave digital algorithms combines advantages of hardware and software emulators.
Contents

1 Motivation

2 Memristive Emulator

3 Wave Digital Emulation

4 FPGA Implementation

5 Conclusion and Outlook

6 Acknowledgment
Wave Digital Emulation

Wave Digital Principle

Reference circuit:

\[u(t) = u(t_0) + \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau \]

Differential equation:

\[t_k = t_0 + kT \]

Difference equation:

\[u(t_k) \approx u(t_{k-1}) + \frac{T}{2C} [i(t_k) + i(t_{k-1})] \]

Algorithmic model:

\[a = u + Ri \]

\[b = u - Ri \]

Wave digital algorithm:

\[b(t_k) \approx a(t_{k-1}) \]

Implicit

Explicit
Wave Digital Emulation of Memristive Systems

Memristive Reflection Coefficient

\[b(t_k) = \rho(M) a(t_k) \]

\[\rho(M) = \frac{M - R}{M + R} \]

\[\hat{R}(t_k) \]

Transformation Unit

Processing Unit

Reflection Coefficient
Contents

1 Motivation
2 Memristive Emulator
3 Wave Digital Emulation
4 FPGA Implementation
5 Conclusion and Outlook
6 Acknowledgment
HP-Ion Drift Model

Electrical Circuit and Wave Flow Diagram

HP-ion drift model

\[u(t) = M(z) i(t) \]
\[\dot{z}(t) = k w(z) i(t) \]
FPGA Implementation

Implementation

Results

\begin{figure}
\centering
\begin{tikzpicture}
 \node[draw, thick, rectangle] (adc) at (0,0) {ADC};
 \node[draw, thick, rectangle] (fpga) at (2,0) {FPGA};
 \node[draw, thick, rectangle] (dac) at (4,0) {DAC};
 \draw[->, thick] (adc) -- (fpga);
 \draw[->, thick] (fpga) -- (dac);
\end{tikzpicture}
\end{figure}

\begin{figure}
\centering
\begin{tikzpicture}
 \begin{axis}[
 xlabel={$u \text{ in V}$},
 ylabel={$i \text{ in mA}$},
 xmin=-1, xmax=1,
 ymin=-4, ymax=4,
 xtick={-1,0,1},
 ytick={-4,0,4},
 legend pos=north west,
 \]
 \addplot[blue, thick] coordinates {(-1,0) (-0.5,4) (0,0) (0.5,-4) (1,0)};\node at (axis cs:-0.5,4) {$f = 0.5 \text{ Hz}$};\node at (axis cs:0.5,-4) {$f = 1 \text{ Hz}$};\end{axis}
\end{tikzpicture}
\end{figure}
Contents

1 Motivation

2 Memristive Emulator

3 Wave Digital Emulation

4 FPGA Implementation

5 Conclusion and Outlook

6 Acknowledgment
Conclusion

- memristive emulators for neuromorphic circuits
- wave digital method
 - preserving passivity of the analog counterpart
 - convenient stability investigations
 - efficient, robust and platform-independent algorithmic model
- FPGA implementation
 - HP-ion drift model
 - hysteresis as expected
 - reconfigurable

Outlook

- ASIC Implementation
 - double barrier memristive device
- emulation of dedicated neuromorphic circuits
Contents

1. Motivation
2. Memristive Emulator
3. Wave Digital Emulation
4. FPGA Implementation
5. Conclusion and Outlook
6. Acknowledgment
The financial support by the German Research Foundation (Deutsche Forschungsgemeinschaft - DFG) through FOR 2093 is gratefully acknowledged.