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Abstract— The main focus of space-time coding design and
analysis for MIMO systems has been so far focused on single-
user systems. For single-user systems, transmit diversityschemes
suffer a loss in spectral efficiency if the receiver is equipped with
more than one antenna, making them unsuitable for high rate
transmission. One such transmit diversity scheme is the cyclic
delay diversity code (CDD). The advantage of CDD over other
diversity schemes such as orthogonal space-time block codes
(OSTBC) is that a code rate of one and delay optimality are
achieved independent of the number of transmit antennas. In
this work we analyze the ergodic rate of a multi-user multiple
access channel (MAC) with each user applying such a cyclic delay
diversity (CDD) code. We derive closed form expressions forthe
ergodic sum-rate of multi-user CDD and compare it with the
sum-capacity. We study the ergodic rate region and show thatin
contrast to what is conventionally known regarding the single-
user case, transmit diversity schemes are viable candidates for
high rate transmission in multi-user systems. Finally, ourtheo-
retical findings are illustrated by numerical simulation results.

I. I NTRODUCTION

Multiple-input multiple-output or MIMO wireless systems
have received a significant amount of interest due to their
capability of dramatically increasing the capacity of a com-
munication link [2], [3]. Also, there has been considerable
work on a variety of schemes which exploit multiple antennas
at both the transmitter and receiver in order to obtain spatial
diversity, i.e. to improve the reliability of the system such
as orthogonal space-time block codes (OSTBC) [4], [5] and
space-time trellis codes [6] (STTC). An simple example for
a STTC is the delay diversity code, first proposed in [7]
and also discussed in [6], [8], where the data stream on the
first transmit antenna is transmitted with delays on the other
antennas. The delay diversity code achieves full diversitybut
has a disadvantage of a slight rate loss due to some leading
and tailing zeros. In order to avoid this drawback, cyclic delay
diversity (CDD) has been proposed in [9].

The main advantage of CDD over OSTBC is that a code
rate of one is achieved independent of the number of transmit
antennas, whereas OSTBC suffer a rate loss by increasing the
number of transmit antennas [10]–[12]. The performance of
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CDD in terms of error probability was analyzed in [9] for
frequency flat and frequency selective channels. The diversity-
multiplexing tradeoff for delay diversity was characterized
in [13]. Based on the assumption that statistical information
about the channel is available at the transmitter, transmitfilters
employed at the transmitter are optimized in [14] in order to
minimize the Chernoff bound on the error probability of CDD.
The average rate for CDD by assuming Gaussian as well as
PSK/QAM input signals for a point-to-point transmission with
nT = 2 or nT = 4 transmit antennas andnR ≤ 2 receive
antennas was investigated in terms of Monte-Carlo simulations
in [15].

As noticed in [16], most of the work on space-time coding
so far is focused on single-user systems. For such single-
user systems, it was shown that the loss in terms of spectral
efficiency for transmit diversity schemes increases significantly
for more than one receive antenna [17], making them inappro-
priate for high rate transmission. In this work, by assuminga
Gaussian codebook, we analyze the ergodic rate performance
of a multiple access channel (MAC) system with multiple users
transmitting their data to the base station by using a CDD.
At the receiver, we apply a joint maximum-likelihood (ML)
detector. We compare the achieved ergodic sum-rate with the
sum-capacity of a MAC system assuming that the users do not
have channel state information (CSI) and the base station has
full CSI. We show that, if the number of receive antennasnR

is less than the number of usersK, i.e.nR ≤ K in the system
(which is a reasonable assumption), the loss of the proposed
scheme in terms of spectral efficiency is negligible. This isin
strong contrast to single-user systems [15], [17]. Thus, CDD is
indeed an attractive candidate for transmit strategies in MIMO
multi-user systems.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model and the construction
of the CDD. The performance of CDD in terms of spectral
efficiency is then analyzed and compared to the sum-capacity
in section III, followed by simulations and concluding remarks
in Section IV and V.

Notational conventions are as follows. We will use bold-
faced upper case letters to denote matrices, e.g.,X, with
elementsxi,j ; bold-faced lower case letters for column vec-
tor, e.g.,x, and light-faced letters for scalar quantities. The
superscripts(·)T and(·)H denote the transpose and Hermitian
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Fig. 1. Multiuser MIMO multiple access channel (MAC) with users
MS1,. . . , MSK transmitting data to base station (BS).

operations, respectively. Finally, the identity matricesand all
zero vectors of the required dimensions will be denoted byI

and0T . E[·] will denote the expectation operator.

II. SYSTEM MODEL

In this work, we consider a multiuser multiple access
channel (MAC) withK users each withnT transmit antennas
and nR receive antennas at the base station as depicted in
Fig. 1.

The system model is given as

Y =

K∑

k=1

√

SNR

nT

GkH
T
k + N, (1)

whereSNR denotes the signal-to-noise ratio,Gk is the trans-
mit matrix of size [T × nT ], T is the block length andN
([T×nR]) is the additive white Gaussian noise (AWGN) matrix
N ∼ CN (0, I). In this work, we focus on delay optimal codes,
in the sense that the decoding is performed afterT channel
uses withnT = T [5], [10]. The channel between userk,
1 ≤ k ≤ K, and the base station is modeled by a random
zero-mean component channelHk ([nR×nT ]) with identically
independent distributed (iid) complex Gaussian entries, i.e.
Hk ∼ CN (0, I), 1 ≤ k ≤ K. We assume that each userk
is applying a cyclic delay diversity scheme (for simplicitywe
skip the user index) , given as

Gk(xk) = G(x) =













x1 x2 · · · xT

xT x1 · · · xT−1

xT−1 xT · · · xT−2

...
. . .

. . .
. . .

x3 x4
. . . x2

x2 x3 · · · x1













(2)

where xk = [x1, x2, . . . , xT ]T is the vector of transmitted
symbols of userk.

III. PERFORMANCE ANALYSIS

In the following, we analyze the ergodic sum-rate perfor-
mance achieved with the proposed scheme and compare it
to the ergodic MAC sum-capacity. We start with the case,

where only one antenna is available at the base station, i.e.
nR = 1, and afterwards generalize it to higher number
of receive antennas. The separation of these two cases is
motivated by the fact that the spectral efficiency for transmit
diversity schemes in single-user systems with one receiving
antenna is close to (e.g. QSTBC) or even equal to capacity
(Alamouti scheme) [17]. With more than one receive antenna,
this behavior changes significantly to the disadvantage of the
transmit diversity schemes. As we will see later on, for multi-
user systems the picture looks different.

A. nR = 1 antenna at the base station

For nR = 1 at the base station, the system equation in (1)
reduces to

y =

K∑

k=1

√

SNR

nT

Gkh
T
k + n

with hk of size [1 × nT ], which can be rewritten as

ỹ =

K∑

k=1

√

SNR

nT

H̃kxk + ñ =

√

SNR

nT

H̃x + ñ

with where the circulant matrices̃Hk, 1 ≤ k ≤ K,

H̃k =













hk
1 hk

2 · · · hk
T

hk
2 hk

3 · · · hk
1

hk
3 hk

4 · · · hk
2

...
. . .

. . .
. . .

hk
T−1 hk

T

. . . hk
T−2

hk
T hk

1 · · · hk
T−1













are the effective channels between userk and the base station,
H̃ =

[

H̃1, H̃2, . . . , H̃K

]

and x = [xT
1 ,x

T
2 , . . . ,x

T
K ]T is

obtained by stacking the transmit signals of the users into
one large vector. The instantaneous rate achievable with the
circulant code is then given as

Ic =
1

T
log2 det

(

IT +
SNR

nT

H̃H̃H

)

=
1

T
log2 det

(

IT +
SNR

nT

K∑

k=1

H̃kH̃
H
k

)

.

Since theH̃k, 1 ≤ k ≤ K, are all circulant matrices, they
can be simultaneously diagonalized by the unitary DFT matrix
D [18], i.e. H̃kH̃

H
k = DnTΛkD

H . Therefore,Ic results in

Ic =
1

T
log2 det

(

IT +
SNR

nT

K∑

k=1

DnTΛkD
H

)

,

=
1

T
log2 det

(

IT +
SNR

nT

nT diag (λ1, λ2, . . . , λT )

)

,

where theλt are i.i.d. chi-square distributed random variables
with 2K degrees of freedom, i.e.λt ∼ χ2

2K . For the ergodic
sum-rate performance given asRc = E[Ic], we thus have

Rc =
1

T
E

[
T∑

t=1

log2 (1 + SNRλt)

]

= E [log2 (1 + SNRλ)] ,



whereλ ∼ χ2
2K . In order to derive a lower bound on the above

expression, we make use of the fact thatlog2 (1 + aex) is a
convex function witha > 0, thus applying Jensen’s inequality
results in

Rc ≥ log2 (1 + SNR exp (E [log2 (λ)])) .

From [19], [20] we know that

E [log2 (λ)] = ψ(K) =

K−1∑

k=1

1

k
− γ, (3)

where ψ(·) is the digamma or psi function [21, p.943,
eq.8.360] andγ ≈ 0.577 is Euler’s constant. Thus, fornR = 1
receive antenna at the base station, the average sum-rate
performance of the proposed scheme is lower bounded by

Rc ≥ log2

(

1 + SNR exp

(
K−1∑

k=1

1

k
− γ

))

. (4)

In contrast, note that the sum-capacity of the multiuser MAC
system can be lower bounded by

C ≥ log2

(

1 +
SNR

nT

exp

(
nT K−1∑

k=1

1

k
− γ

))

. (5)

The result in (5) is obtained by applying the techniques in [19]
and the fact that for no CSIT the ergodic sum capacity of
a K users MAC channel, where each user hasnT transmit
antennas, is equivalent to the ergodic capacity of a single-
user system withKnT transmit antennas [22, Proposition 1],
[2]. By comparing (4) and (5), we observe that the difference
between the ergodic sum-rate achieved with CDD and the sum-
capacity, i.e.C −Rc converges to

1

ln(2)

nT K−1∑

k=K

1

k
− ln(nT )

=
1

K ln(2)

(

1 +K

(
nT K−1∑

k=K+1

1

k
− ln(nT )

))

(6)

for high SNR. This result is restricted to highSNR, where the
lower bounds in (4) and (5) are tight and thus can be used for
computing the differenceC − Rc. Note that

∑nT K−1
k=K+1

1
k

is a
nondecreasing function inK andnT . Further, note that

lim
K→∞

nT K−1∑

k=K+1

1

k
= lim

K→∞

nT K−1∑

k=1

1

k
−

K∑

k=1

1

k

= lim
K→∞

ψ(nTK) − ψ(K + 1) = ln(nT ). (7)

Thus, fornR = 1 the difference in (6), i.e.C −Rc, is upper
bounded by

C −Rc ≤
1

K ln(2)
(8)

for high SNR, i.e. the more the number of users the less is the
difference between the actual capacity and the rate achieved
with CDD.

B. Arbitrary number of receive antennas nR

For higher number of receive antennas the effective (some-
times also referred to as equivalent) channel to each userk is
given as

H̃k =
[

H̃T
k,1, H̃

T
k,2, . . . , H̃

T
k,nR

]T

where

H̃k,i =













hk
i,1 hk

i,2 · · · hk
i,T

hk
i,2 hk

i,3 · · · hk
i,1

hk
i,3 hk

i,4 · · · hk
i,2

...
. . .

. . .
. . .

hk
i,T−1 hk

i,T

. . . hk
i,T−2

hk
i,T hk

i,1 · · · hk
i,T−1













with

H̃ =
[

H̃1, H̃2, . . . , H̃K

]

(9)

being a [nRnT × nTK] matrix. Thus,H̃ is a block matrix
with circulant blocks. Similarly to the single receive antenna
case, the instantaneous rate with arbitrarynT , nR andK users
achievable with the circulant code is then given as

Ic =
1

T
log2 det

(

InRnT
+

SNR

nT

H̃H̃H

)

. (10)

We are now able to state the following theorem.

Theorem 1 The ergodic-sum rate of a multi-user MAC
system with K users each equipped with nT transmit antennas
applying a CDD and nR receive antennas at the base station
is lower bounded by

Rc ≥
L∑

l=1

log2

(

1 + SNR exp

(
M−l∑

k=1

1

k
− γ

))

, (11)

with L = min(nR,K) and M = max(nR,K).

Proof: : The proof is given in the Appendix.
In comparison, using similar techniques the sum-capacity

of the multiuser MAC system withK users, each withnT

transmit andnR receive antennas can be lower bounded by

C ≥
L̃∑

l=1

log2



1 +
SNR

nT

exp





M̃−l∑

k=1

1

k
− γ







 (12)

with L̃ = min(nR, nTK), M̃ = max(nR, nTK).
By applying Jensens inequality, the lower bound onRc

in (11) and the lower bound forC in (12) may be bounded
from below by

Rc ≥ L log2

(

1 + SNR exp

(

1

L

L∑

l=1

M−l∑

k=1

1

k
− γ

))

(13)

and

C ≥ L̃ log2



1 +
SNR

nT

exp




1

L̃

L̃∑

l=1

M̃−l∑

k=1

1

k
− γ







 , (14)



respectively. These new lower bounds get tight for high
SNR [19]. Assume thatnR ≤ K, which is a reasonable
assumption. Then, applying similar steps as in (6)- (7), us-
ing (13) and (14) the differenceC−Rc may be upper bounded
by

C −Rc ≤
1

ln(2)

nR∑

l=1

1

K − l + 1

(

1 + (K − l + 1)

× ln

(
1

nT

+
(nT − 1)K

nT (K − l + 1)

))

(15)

for high SNR. Thus, increasingK reduces the differenceC−
Rc, while increasingnR increases the differenceC −Rc.

In addition to the lower bound, an upper bound is also
derived following the approach of [20]. Applying Jensen’s
inequality to (21) results in

Rc ≤ log2 E
[
det
(
I + SNRH′

1H
′H
1

)]

due to the concavity of the logarithm. With [20, Theorem A.4,
eq.(A.11)], we arrive at

Rc ≤ log2

(
L∑

i=0

(
L

i

)
M !

(M − i)!
SNR

i

)

. (16)

In the following section, our theoretical results are illustrated
by numerical simulations.

IV. SIMULATIONS

A. Single-User case

In Fig. 2, the ergodic rateRc achievable with the CDD
and the ergodic capacity for a single-user system are depicted
with nT = 4 transmit andnR = 1 and nR = 2 receive
antennas, respectively. In addition to this, the lower bound on
Rc in (11) derived in the previous section is also depicted.
From the figure, we observe that fornR = 1, Rc is close
to the capacity. By increasingnR, we observe that the loss
increases significantly. The lower bound onRc confirms this
behavior and verifies the numerical results obtained in [15],
[17] that transmit diversity schemes perform poorly fornR >

1 in single-user systems.

B. Multi-User case

In Fig. 3, the ergodic capacity region of a symmetric
system withK = 2 users each equipped withnT = 2
transmit antennas and a base station withnR = 2 receive
antennas is depicted for three differentSNR values ranging
from SNR = 0 dB to SNR = 40 dB. In addition to that,
the ergodic rate region achievable with CDD is depicted. The
corner points of the regions can be achieved by a successive
cancelation decoder. Note that the capacity and the maximum
rate achievable with CDD of the point-to point link with the
other user absent from the system (or equivalently completely
canceled) are given by

R1
c ≤ E log2

[
det
(
I + SNRh′

1,1h
′H
1,1

)]

C1 ≤ E log2

[

det

(

I +
SNR

nT

H1H
H
1

)]

(17)
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Fig. 2. Single-user ergodic rate of the CDD and capacity.nR = 1, 2 and
nT = 4. Lower bounds obtained from (11) are also depicted.

and

R2
c ≤ E log2

[
det
(
I + SNRh′

1,2h
′H
1,2

)]

C2 ≤ E log2

[

det

(

I +
SNR

nT

H2H
H
2

)]

, (18)

respectively, whereh′

1,i ([nR × 1]) is the ith column of the
nR × K matrix H′

1 in (21). The rate of the individual user
cannot exceed these bounds, which are referred to as single-
user bounds withR1

c +R2
c = C andC1 +C2 = C. From the

figure, we observe that the gap between the single-user bounds,
e.g.C1−R

1
c , is significantly large. An interesting observation

is, however, that the corner points of the capacity region are to
the left or below the corner points of the ergodic rate region
of CDD. Thus, at the so called Pareto optimal part [24] of
the rate region which is the time-sharing part between the two
corner points, the gap between the symmetric CDD rate region
to the capacity region is dramatically reduced. The Pareto
optimal part contains all the optimal operating points of the
channel [24, Ch.6,p.231].

In Fig. 4, we depict for a system withK = 6 users and
nR = nR = 3 antennas from top to bottom (at the most
right): the ergodic capacity, the lower bound on the ergodic
capacity in (12) (very tight), the upper bound on the ergodic
sum-rate of the CDDRc in (16), Rc, and the lower bound
on Rc in (11) discussed in the previous sections. Differently
from the single-user system, most of the ergodic capacity is
obtained by the CDD despite multiple receiving antennas at
the base station. Both the lower and upper bound onRc track
the ergodic sum-rate performance of the CDD quite well.

V. CONCLUSION

Research in the area of space-time design and analysis
for MIMO systems has traditionally focused on single-users
scenarios. For these systems, transmit diversity schemes suffer
a loss in spectral efficiency when the receiver has more than
one antenna, making them unsuitable for high rate transmis-
sion. Here, we focused on the performance of cyclic delay
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diversity (CDD) codes. We analyzed the ergodic sum-rate and
studied the ergodic rate region achievable by using the CDD
for each user in a multi-user multiple access channel (MAC).
We derived tight closed form expressions for the ergodic
sum-rate of multi-user CDD and compared it with the sum-
capacity. We showed that in contrast to the single-user case,
transmit diversity schemes are viable candidates for high rate
transmission in multi-user systems when the number of users
exceeds the number of antennas at the base.

APPENDIX

A. Proof of Theorem 1

Proof: The expression in (10) may be rewritten as

Ic =
1

T
log2 det

(

I +
SNR

nT

(InR
⊗ D) H̃H̃H (InR

⊗ D)H

︸ ︷︷ ︸

nT ĤĤH

)

(19)

whereD is the unitary DFT-matrix of appropriate size of[nT×
nT ] with DDH = I and ⊗ denotes the Kronecker product
between two matrices. According to [18, p.183], the matrix
ĤĤH is a [nRnT ×nRnT ] block matrix with diagonal blocks
of size [nT × nT ]. The non-zero entries of the matrix̂H are
eachCN (0, 1) distributed.

Let us now multiply the matrixĤĤH in (19) from right
and left with a [nRnT × nRnT ] permutation matrixP and
PH , respectively. It holds thatPPH = I.

Example .1 For nT = 4, nR = 2 and K = 2, P is given as

P =















1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1















.

Thus, we have

Ic =
1

T
log2 det



I + SNRPHĤĤHP
︸ ︷︷ ︸

H′H′H





=
1

T

nT∑

i=1

log2 det
(
InR

+ SNRH′

iH
′H
i

)
, (20)

where H′ = diag
(
H′

1,H
′

2, . . . ,H
′

nT

)
is a block diagonal

matrix, with nT blocks of size[nR × K] and each block is
CN (0, I) distributed. Eq. (20) can be interpreted as the sum-
rate ofnT parallel MIMO channels each withnR receive and
K transmit antennas, divided by the block length ofT . Taking
the expectation of (20) withT = nT results in

Rc = E log2 det
(
I + SNRH′

1H
′H
1

)
. (21)

Following the same approach as of [19], and using the lower
bound on mutual information from [3, eq.(12)] that

I ≥

min(nR,K)
∑

j=1

log2 (1 + SNRXj) ,

where theXj ∼ χ2
2(max(nR,K)−j+1), we apply Jensen’s

inequality with

E [log2 (1 + a exp(x))] ≥ log2 (1 + a exp(E [x]))

for a > 0 to (21). Furthermore, by using (3) we arrive at the
lower bound forRc given in (11).
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